Math 100 – SOLUTIONS TO WORKSHEET 1 TANGENT AND VELOCITY PROBLEMS; LIMITS

1. The slope of a graph

Solution: For $x \neq 3$ we have $\frac{x-3}{x^2-x-6} = \frac{x-3}{(x-3)(x+2)} = \frac{1}{x+2}$ so $\lim_{x\to 3} f(x) = \lim_{x\to 3} \frac{1}{x+2} = \boxed{\frac{1}{5}}$ (2) Evaluate

(a) $\lim_{x\to 1} \sin(\pi x)$ **Solution:** The function is nice and $\lim_{x\to 1} \sin(\pi x) = \sin(\pi) = 0.$

Date: 5/9/2019, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(b)
$$\lim_{x \to 1} \frac{e^x(x-1)}{x^2+x-2}$$
.
Solution: $\frac{e^x(x-1)}{x^2+x-2} = \frac{e^x(x-1)}{(x-1)(x+2)} = \frac{e^x}{x+2} \xrightarrow[x \to 1]{} \frac{e^1}{1+2} = \left[\frac{e}{3}\right]$.
(c) $\lim_{x \to 0} \frac{\sqrt{1+2x}-\sqrt{1+x}}{3x}$
Solution: We have
 $\frac{\sqrt{1+2x}-\sqrt{1+x}}{3x} = \frac{\sqrt{1+2x}-\sqrt{1+x}}{3x} \cdot \frac{\sqrt{1+2x}+\sqrt{1+x}}{\sqrt{1+2x}+\sqrt{1+x}}$
 $= \frac{(\sqrt{1+2x}-\sqrt{1+x})(\sqrt{1+2x}+\sqrt{1+x})}{3x(\sqrt{1+2x}+\sqrt{1+x})}$
 $= \frac{(1+2x)-(1+x)}{3x(\sqrt{1+2x}+\sqrt{1+x})}$
 $= \frac{x}{3x} \cdot \frac{1}{(\sqrt{1+2x}+\sqrt{1+x})}$
 $= \frac{1}{3(\sqrt{1+2x}+\sqrt{1+x})} \xrightarrow[x \to 0]{} \frac{1}{3(\sqrt{1}+\sqrt{1})} = \left[\frac{1}{6}\right]$.

(3) Either evaluate the limit or explain why it does not exist. Sketching a graph might be helpful.

(a)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 1 & x = 1\\ 2 - x^2 & x > 1 \end{cases}$

Solution: From the left $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \sqrt{x} = \sqrt{1} = 1$. From the right $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} 2 - x^2 = 2 - 1 = 1$ so the limit exists and equals 1. $\begin{cases} \sqrt{x} & 0 \le x < 1 \end{cases}$

.

(b)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 1 & x = 1\\ 4 - x^2 & x > 1 \end{cases}$

Solution: From the left $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \sqrt{x} = \sqrt{1} = 1$. From the right $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} 4 - x^2 = 4 - 1 = 3$ so the does not exist.