Math 100 - SOLUTIONS TO WORKSHEET 1 TANGENT AND VELOCITY PROBLEMS; LIMITS

1. The slope of a graph

(1) Find the slope of the line through $P(1,1)$ and $Q\left(x, x^{2}\right)$ where:
(a) $x=3$

Solution: $\quad Q=(3,9)$ so slope is $\frac{\Delta y}{\Delta x}=\frac{9-1}{3-1}=4$
(b) $x=1.1$

Solution: $\quad Q=(1.1,1.21)$ so slope is $\frac{\Delta y}{\Delta x}=\frac{1.21-1}{1.1-1}=\frac{0.21}{0.1}=2.1$
(c) $x=1.01$

Solution: $\quad Q=(1.01,1.0201)$ so slope is $\frac{\Delta y}{\Delta x}=\frac{1.0201-1}{1.01-1}=\frac{0.0201}{0.01}=2.01$
(d) $x=1.001$

Solution: $\quad Q=(1.001,1.002001)$ so slope is $\frac{\Delta y}{\Delta x}=\frac{1.002001-1}{1.001-1}=\frac{0.002001}{0.001}=2.001$
What is the slope of the tangent line at $P(1,1)$? What is its equation?
Solution: The slope is 2 , so the line is $y-1=2(x-1)$ or $y=2 x-1$.

2. Limits

(1) Evaluate $f(x)=\frac{x-3}{x^{2}-x-6}$ at $x=2.9,2.99,2.999,3.1,3.01,3.001$. What is $\lim _{x \rightarrow 3} f(x)$?

Solution: For $x \neq 3$ we have $\frac{x-3}{x^{2}-x-6}=\frac{x-3}{(x-3)(x+2)}=\frac{1}{x+2}$ so $\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{1}{x+2}=\frac{1}{5}$
(2) Evaluate
(a) $\lim _{x \rightarrow 1} \sin (\pi x)$

Solution: The function is nice and $\lim _{x \rightarrow 1} \sin (\pi x)=\sin (\pi)=0$.
(b) $\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}$.

Solution: $\quad \frac{e^{x}(x-1)}{x^{2}+x-2}=\frac{e^{x}(x-1)}{(x-1)(x+2)}=\frac{e^{x}}{x+2} \xrightarrow[x \rightarrow 1]{\longrightarrow} \frac{e^{1}}{1+2}=\frac{e}{3}$.
(c) $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1+x}}{3 x}$

Solution: We have

$$
\begin{aligned}
\frac{\sqrt{1+2 x}-\sqrt{1+x}}{3 x} & =\frac{\sqrt{1+2 x}-\sqrt{1+x} \cdot \frac{\sqrt{1+2 x}+\sqrt{1+x}}{\sqrt{1+2 x}+\sqrt{1+x}}}{} \\
& =\frac{(\sqrt{1+2 x}-\sqrt{1+x})(\sqrt{1+2 x}+\sqrt{1+x})}{3 x(\sqrt{1+2 x}+\sqrt{1+x})} \\
& =\frac{(1+2 x)-(1+x)}{3 x(\sqrt{1+2 x}+\sqrt{1+x})} \\
& =\frac{x}{3 x} \cdot \frac{1}{(\sqrt{1+2 x}+\sqrt{1+x})} \\
& =\frac{1}{3(\sqrt{1+2 x}+\sqrt{1+x})} \frac{1}{x \rightarrow 0} \frac{1}{3(\sqrt{1}+\sqrt{1})}=\frac{1}{6}
\end{aligned}
$$

(3) Either evaluate the limit or explain why it does not exist. Sketching a graph might be helpful.
(a) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ 1 & x=1 \\ 2-x^{2} & x>1\end{array}\right.$.

Solution: From the left $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sqrt{x}=\sqrt{1}=1$. From the right $\lim _{x \rightarrow 1^{+}} f(x)=$ $\lim _{x \rightarrow 1^{+}} 2-x^{2}=2-1=1$ so the limit exists and equals 1 .
(b) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ 1 & x=1 \\ 4-x^{2} & x>1\end{array}\right.$.

Solution: From the left $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sqrt{x}=\sqrt{1}=1$. From the right $\lim _{x \rightarrow 1^{+}} f(x)=$ $\lim _{x \rightarrow 1^{+}} 4-x^{2}=4-1=3$ so the does not exist.

