Lior Silberman's Math 535, Problem Set 4: Preliminaries on Tori **Connected abelian Lie groups**

- 1. Let $\Lambda < \mathbb{R}^d$ be a discrete subgroup. Show that $\Lambda = \bigoplus_{i=1}^k \mathbb{Z}\underline{v}_i$ for a linearly independent set $\{\underline{v}_i\}_{i=1}^k \subset \mathbb{R}^d$. Conversely show that such a subgroup is discrete.
- 2. Let G be an Abelian Lie group, and suppose that $\pi_0(G) = G/G^{\circ}$ is finite. Show that $G \simeq$ $G^{\circ} \times \pi_0(G)$. (Hint: show that a connected abelian Lie group is divisible).

Tori

- 3. (Fourier analysis on tori) Let $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$ be the *n*-torus. A trigonometric polynomial on \mathbb{T}^n is a function of the form $f(\underline{x}) = \sum_{i=1}^{I} a_i e(\underline{k}_i \cdot \underline{x})$ where $\underline{k}_i \in (\mathbb{Z}^n)^*$ lie in the dual lattice.
 - (a) Use Peter-Weyl to show that the space of trigonometric polynoimals is dense in $C(\mathbb{T}^n)$ and $L^2(\mathbb{T}^n)$.
 - (b) Use Stone-Weierstrass instead to show that the trigonometric polynomials are dense in $C(\mathbb{T}^n)$, and use that to show that their orthocomplement in $L^2(\mathbb{T}^n)$ vanishes, getting density there too.
 - (c) For $f \in L^2(\mathbb{T}^n)$ and $\underline{k} \in (\mathbb{Z}^n)^*$ set $\hat{f}(\underline{k}) = \int_{\mathbb{T}^n} f(\underline{x}) e(-\underline{k} \cdot \underline{x}) d^n x$ (probability Haar measure). Then $\sum_{\underline{k}} \hat{f}(\underline{k}) e(\underline{k} \cdot \underline{x})$ converges in L^2 to f.
 - (d) For $f \in C^m(\mathbb{T}^n)$ use integration by parts to show that $|\hat{f}(\underline{k})| \leq C_f (1+|\underline{k}|)^{-m}$. Conclude that for m > n, the series $\sum_{\underline{k}} \hat{f}(\underline{k}) e(\underline{k} \cdot \underline{x})$ converges in C^{m-n-1} to f. (e) (Weyl criterion) Let $\{\mu_j\}_{j=1}^{\infty}$ be a sequence of Borel probability measures on \mathbb{T}^n . Show
 - that $\mu_i(f) \to \mu(f)$ for every f iff this holds for the plane waves $f(\underline{x}) = e(\underline{k} \cdot \underline{x})$
- 4. (Weyl equidistribution) Let $\{\xi_i\}_{i=0}^n \subset \mathbb{R}$ be linearly independent over \mathbb{Q} where $\theta_0 = 1$, and let $\underline{\xi} = (\xi_i)_{i=1}^n \mod \mathbb{Z}^n \in \mathbb{T}^n$. Show that the sequence $\left\{k\underline{\xi}\right\}_{k=1}^\infty \subset \mathbb{T}^n$ is uniformly distributed: for any open $U \subset \mathbb{T}^n$,

$$\frac{1}{K} \# \left\{ 1 \le k \le K \mid k\underline{\xi} \in U \right\} = \frac{\operatorname{vol}(U)}{\operatorname{vol}(\mathbb{T}^n)}.$$

Conclude that the sequence $\left\{k\underline{\xi}\right\}_{k=1}^{\infty}$ is *dense* in the torus.

Hint: Let $\mu_K = \frac{1}{K} \sum_{k=1}^K \delta_{k\xi}$. By 1(e) to show $\mu_K \xrightarrow[K \to \infty]{\text{wk-*}}$ vol it suffices to test against plane waves.