Lior Silberman's Math 535, Problem Set 3: Lie Groups

Constructions on manifolds

The first two exercises are highly recommended if you are interested in algebraic geometry or in differential geometry:

1. (View of the tangent space) Let M be a smooth manifold, $C^{\infty}(M)$ its algebra of smooth functions (multiplication defined pointwise). For $p \in M$ let $I_{p}=\left\{f \in C^{\infty}(M) \mid f(p)=0\right\}$ be the associated maximal ideal. Recall that we set $T_{p}^{*} M=I_{p} / I_{p}^{2}$ and $T_{p} M=\left(T_{p}^{*} M\right)^{*}$.
(a) Let G_{p} be the set of pairs (f, U) where $p \in U \subset M$ is open and $f \in C^{\infty}(U)$. Show that $(f, U) \sim(g, V) \Longleftrightarrow f \upharpoonright_{U \cap V}=g \upharpoonright_{U \cap V}$ is an equivalence relation, and endow $\mathcal{G}_{p} \stackrel{\text { def }}{=} G_{p} / \sim$ with a natural structure as an \mathbb{R}-algebra.
(b) Let $C^{\infty}(M)_{I_{p}}$ be the localization of $C^{\infty}(M)$ at the prime ideal I_{p}. Show that associating to $f \in C^{\infty}(M)$ the equivalence class of $(f, M) \in G_{p}$ is an algebra homomorphism $C^{\infty}(M) \rightarrow$ \mathcal{G}_{p} inducing an isomorphism $C^{\infty}(M)_{I_{p}} \simeq \mathcal{G}_{p}$.
(c) Conclude that restriction of maps induces an isomorphism $I_{p}(M) / I_{p}^{2}(M) \simeq I_{p}(U) / I_{p}^{2}(U)$ for any open U containing p.
(c) A derivation at p is an \mathbb{R}-linear map $X: C^{\infty}(M) \rightarrow \mathbb{R}$ such that $X(f g)=(X f) \cdot g(p)+$ $f(p) \cdot(X g)$. Write $\tilde{T}_{p} M$ for the set of derivations at p. Show that $\widetilde{T}_{p} M$ is an \mathbb{R}-vector space.
(d) Let $X \in \tilde{T}_{p} M$. Show that $X(f)=0$ if $f \in I_{p}^{2}$, so that the map $X \mapsto X \upharpoonright_{I_{p} / I_{p}^{2}}$ gives a linear $\operatorname{map} \tilde{T}_{p} M \rightarrow T_{p} M$.
(e) Conversely, let $v \in T_{p} M$. Show that setting $X_{v} f \stackrel{\text { def }}{=} v(f-f(p))$ gives $X_{v} \in \tilde{T}_{p} M$ and that the map $v \mapsto X_{v}$ is inverse to the map of (d).
2. Let M, N be smooth manifolds and let $\varphi: M \rightarrow N$ be a smooth map. Fix $p \in M$.
(a) Show that mapping $f \in I_{\varphi(p)} N$ to $f \circ \varphi \in I_{p}(M)$ induces a linear map $\left(d \varphi_{p}\right)^{*}: T_{\varphi(p)}^{*} N \rightarrow$ $T_{p}^{*} M$.
(b) For $X \in \tilde{T}_{p} M$ and $f \in C^{\infty}(N)$ set $d \varphi_{p}(X) f \stackrel{\text { def }}{=} X(f \circ \varphi)$. Show that $d \varphi_{p}(X) \in \tilde{T}_{p} N$ and that $d \varphi_{p} \in \operatorname{Hom}_{\mathbb{R}}\left(\tilde{T}_{p} M, \tilde{T}_{p} N\right)$.
(c) Show that, under the isomorphism T_{p} and \tilde{T}_{p} from problem 1, the maps $d \varphi_{p}$ and $\left(d \varphi_{p}\right)^{*}$ are indeed dual.
(d) Show that the map $\varphi \mapsto d \varphi$ satisfies the chain rule: if $\psi: L \rightarrow M$ is smooth and $p \in L$ then $d(\varphi \circ \psi)_{p}=d \varphi_{\psi(p)} \circ d \psi_{p}$.
(e) Show that $d \varphi_{p}, d \varphi_{p}^{*}$ extend to bundle maps $d \varphi: T M \rightarrow T N, d \varphi^{*}: T^{*} N \rightarrow T^{*} M$.

The following two exercises are merely a technical verification.
DEFInition. Let $\Omega \subset \mathbb{R}^{n}$ be a domain, V a topological vector space. For $1 \leq i \leq n, f: \Omega \rightarrow V$ and $x \in \mathbb{R}^{n}$ set

$$
\left(\partial_{i} f\right)(x)=\lim _{h \rightarrow 0} \frac{f\left(x+h e_{i}\right)-f(x)}{h}
$$

(e_{i} is the unit vector in direction i) provided the limit exists. Write $C^{0}(\Omega ; V)=C(\Omega ; V)$ for the space of continuous functions $\Omega \rightarrow V$ and then let

$$
\begin{aligned}
C^{k+1}(\Omega ; V) & =\left\{f \in C^{k}(\Omega ; V) \mid \forall i: \partial_{i} f \in C^{k}(\Omega ; V)\right\} \\
C^{\infty}(\Omega ; V) & =\bigcap_{k=0}^{\infty} C^{k}(\Omega ; V)
\end{aligned}
$$

Finally, if V is a normed space we set $\|f\|_{C^{k}}=\sup \left\{\left\|\partial^{\alpha} f(x)\right\||x \in \Omega,|\alpha| \leq k\}\right.$.
3. Show that this definition is independent of the choice of co-ordinates: if $\varphi: \Omega \rightarrow \Omega^{\prime}$ is a diffeomorphism then $f \mapsto f \circ \varphi$ is a bijection $C^{k}\left(\Omega^{\prime} ; V\right) \rightarrow C^{k}(\Omega ; V)$. In particular, $f \in C^{1}(\Omega ; V)$ has directional derivatives in all directions.
4. Let M be a smooth manifold. Define the spaces $C^{k}(M ; V)$ and $C^{\infty}(M ; V)$. Show that, provided M is compact, $\|f\|_{C^{k}}<\infty$ for all $f \in C^{k}(M ; V)$.

Representation Theory

Fix a Lie group G and a representation $(\pi, V) \in \operatorname{Rep}(G)$.
5. Call $\underline{v} \in V$ smooth if the orbit function $g \mapsto \pi(g) \underline{v}$ is a smooth function $G \rightarrow V$. Write V^{∞} for the set of smooth vectors in V.
(a) Show that V^{∞} is a G-invariant subspace of V.
(b) Show that V^{∞} is dense in V (hint: revisit arguments used in the proof of the Peter-Weyl Theorem).
(c) Suppose V is finite dimensional. Show that the homomorphism $\pi: G \rightarrow \mathrm{GL}(V)$ is a smooth map of smooth manifolds.
6. For $X \in \mathfrak{g}$ and $\underline{v} \in V^{\infty}$ set $\pi(X) v=\frac{d}{d t} \upharpoonright_{t=0} \pi\left(e^{t X}\right) \underline{v}$.
(a) Show that this is well-defined (that the derivative above exists) and that $\pi(X) v \in V^{\infty}$. In fact, show that $\pi(X): V^{\infty} \rightarrow V^{\infty}$ is linear.
(b) (Compatibility) Show that $\pi(g) \pi(X) \pi\left(g^{-1}\right)=\pi\left(\operatorname{Ad}_{g} X\right)$ for all $g \in G$.
(c) Show that $X \mapsto \pi(X)$ is a linear map $\mathfrak{g} \rightarrow \operatorname{End}_{\mathbb{C}}\left(V^{\infty}\right)$.
(d) Show that we have a Lie algebra representation: $\pi([X, Y])=\pi(X) \pi(Y)-\pi(Y) \pi(X)=$ $[\pi(X), \pi(Y)]$. Here, the first commutator is the one in \mathfrak{g}, the second the one of $\operatorname{End}_{\mathbb{C}}\left(V^{\infty}\right)$.

Structure theory

7. Show that $\exp :{ }_{2} \mathbb{R} \rightarrow \mathrm{SL}_{\notin}(\mathbb{R})$ is not surjective.
