Lior Silberman's Math 535, Problem Set 3: Lie Groups

Constructions on manifolds

The first two exercises are highly recommended if you are interested in algebraic geometry or in differential geometry:

- 1. (View of the tangent space) Let M be a smooth manifold, $C^{\infty}(M)$ its algebra of smooth functions (multiplication defined pointwise). For $p \in M$ let $I_p = \{f \in C^{\infty}(M) \mid f(p) = 0\}$ be the associated maximal ideal. Recall that we set $T_p^*M = I_p/I_p^2$ and $T_pM = (T_p^*M)^*$.
 - (a) Let G_p be the set of pairs (f,U) where $p \in U \subset M$ is open and $f \in C^{\infty}(U)$. Show that $(f,U) \sim (g,V) \iff f \upharpoonright_{U \cap V} = g \upharpoonright_{U \cap V}$ is an equivalence relation, and endow $\mathcal{G}_p \stackrel{\text{def}}{=} G_p / \sim$ with a natural structure as an \mathbb{R} -algebra.
 - (b) Let C[∞](M)_{I_p} be the *localization* of C[∞](M) at the prime ideal I_p. Show that associating to f ∈ C[∞](M) the equivalence class of (f, M) ∈ G_p is an algebra homomorphism C[∞](M) → G_p inducing an isomorphism C[∞](M)_{I_p} ≃ G_p.
 - (c) Conclude that restriction of maps induces an isomorphism $I_p(M)/I_p^2(M) \simeq I_p(U)/I_p^2(U)$ for any open U containing p.
 - (c) A *derivation* at p is an \mathbb{R} -linear map $X : C^{\infty}(M) \to \mathbb{R}$ such that $X(fg) = (Xf) \cdot g(p) + f(p) \cdot (Xg)$. Write \tilde{T}_pM for the set of derivations at p. Show that \tilde{T}_pM is an \mathbb{R} -vector space.
 - (d) Let $X \in \tilde{T}_p M$. Show that X(f) = 0 if $f \in I_p^2$, so that the map $X \mapsto X \upharpoonright_{I_p/I_p^2}$ gives a linear map $\tilde{T}_p M \to T_p M$.
 - (e) Conversely, let $v \in T_p M$. Show that setting $X_v f \stackrel{\text{def}}{=} v(f f(p))$ gives $X_v \in \tilde{T}_p M$ and that the map $v \mapsto X_v$ is inverse to the map of (d).
- 2. Let M, N be smooth manifolds and let $\varphi \colon M \to N$ be a smooth map. Fix $p \in M$.
 - (a) Show that mapping $f \in I_{\varphi(p)}N$ to $f \circ \varphi \in I_p(M)$ induces a linear map $(d\varphi_p)^* : T^*_{\varphi(p)}N \to T^*_pM$.
 - (b) For $X \in \tilde{T}_p M$ and $f \in C^{\infty}(N)$ set $d\varphi_p(X) f \stackrel{\text{def}}{=} X (f \circ \varphi)$. Show that $d\varphi_p(X) \in \tilde{T}_p N$ and that $d\varphi_p \in \text{Hom}_{\mathbb{R}} (\tilde{T}_p M, \tilde{T}_p N)$.
 - (c) Show that, under the isomorphism T_p and \tilde{T}_p from problem 1, the maps $d\varphi_p$ and $(d\varphi_p)^*$ are indeed dual.
 - (d) Show that the map $\varphi \mapsto d\varphi$ satisfies the *chain rule*: if $\psi \colon L \to M$ is smooth and $p \in L$ then $d(\varphi \circ \psi)_p = d\varphi_{\psi(p)} \circ d\psi_p$.
 - (e) Show that $d\varphi_p, d\varphi_p^*$ extend to bundle maps $d\varphi: TM \to TN, d\varphi^*: T^*N \to T^*M$.

The following two exercises are merely a technical verification.

DEFINITION. Let $\Omega \subset \mathbb{R}^n$ be a domain, *V* a topological vector space. For $1 \le i \le n$, $f : \Omega \to V$ and $x \in \mathbb{R}^n$ set

$$\left(\partial_{i}f\right)(x) = \lim_{h \to 0} \frac{f(x + he_{i}) - f(x)}{h}$$

(*e_i* is the unit vector in direction *i*) provided the limit exists. Write $C^0(\Omega; V) = C(\Omega; V)$ for the space of continuous functions $\Omega \to V$ and then let

$$C^{k+1}(\Omega;V) = \left\{ f \in C^k(\Omega;V) \mid orall i: \partial_i f \in C^k(\Omega;V)
ight\}$$
 $C^{\infty}(\Omega;V) = igcap_{k=0}^{\infty} C^k(\Omega;V) .$

Finally, if *V* is a normed space we set $||f||_{C^k} = \sup \{ ||\partial^{\alpha} f(x)|| \mid x \in \Omega, |\alpha| \le k \}$.

- 3. Show that this definition is independent of the choice of co-ordinates: if $\varphi \colon \Omega \to \Omega'$ is a diffeomorphism then $f \mapsto f \circ \varphi$ is a bijection $C^k(\Omega'; V) \to C^k(\Omega; V)$. In particular, $f \in C^1(\Omega; V)$ has directional derivatives in all directions.
- 4. Let *M* be a smooth manifold. Define the spaces $C^k(M;V)$ and $C^{\infty}(M;V)$. Show that, provided *M* is compact, $||f||_{C^k} < \infty$ for all $f \in C^k(M;V)$.

Representation Theory

Fix a Lie group *G* and a representation $(\pi, V) \in \text{Rep}(G)$.

- 5. Call $\underline{v} \in V$ smooth if the orbit function $g \mapsto \pi(g)\underline{v}$ is a smooth function $G \to V$. Write V^{∞} for the set of smooth vectors in *V*.
 - (a) Show that V^{∞} is a *G*-invariant subspace of *V*.
 - (b) Show that V^{∞} is *dense* in V (hint: revisit arguments used in the proof of the Peter–Weyl Theorem).
 - (c) Suppose V is finite dimensional. Show that the homomorphism $\pi: G \to GL(V)$ is a smooth map of smooth manifolds.
- 6. For $X \in \mathfrak{g}$ and $\underline{v} \in V^{\infty}$ set $\pi(X)v = \frac{d}{dt} \upharpoonright_{t=0} \pi(e^{tX})\underline{v}$.
 - (a) Show that this is *well-defined* (that the derivative above exists) and that $\pi(X)v \in V^{\infty}$. In fact, show that $\pi(X): V^{\infty} \to V^{\infty}$ is linear.
 - (b) (Compatibility) Show that $\pi(g)\pi(X)\pi(g^{-1}) = \pi(\operatorname{Ad}_g X)$ for all $g \in G$.
 - (c) Show that $X \mapsto \pi(X)$ is a linear map $\mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(V^{\infty})$.
 - (d) Show that we have a *Lie algebra representation*: $\pi([X,Y]) = \pi(X)\pi(Y) \pi(Y)\pi(X) = [\pi(X), \pi(Y)]$. Here, the first commutator is the one in \mathfrak{g} , the second the one of $\operatorname{End}_{\mathbb{C}}(V^{\infty})$.

Structure theory

7. Show that exp: ${}_2\mathbb{R} \to SL_{\not\models}(\mathbb{R})$ is not surjective.