Lior Silberman's Math 535, Problem Set 2: Representation Theory

Basic constructions

- 1. In each case give a precise definition and show that reuslt is a continuous representation of the appropriate groups. In all cases $(\pi, V) \in \text{Rep}(G)$.
 - (a) $H \subset G$ a subgroup, $\operatorname{Res}_{H}^{G} \pi$ the *restriction* of π to H (still acting on V).
 - (b) $W \subset V$ a closed subspace, $\pi \upharpoonright_W$ the restriction of π to W (still a representation of G).
 - (c) $W \subset V$ a closed subspace, $\bar{\pi}$ the representation of G on V/W.
 - (d) The representation $\pi \oplus \sigma$ of *G* on $V \oplus W$ where $(\sigma, W) \in \text{Rep}(G)$ also.
- 2. Consider the representation $\check{\pi}$ of *G* on *V'* where $\check{\pi}(g)\varphi = \varphi \circ \pi(g^{-1})$.
 - (a) Show that $\check{\pi}(g): V' \to V'$ is linear and that $\check{\pi}(gh) = \check{\pi}(g)\check{\pi}(h)$.
 - (b) Show that $\check{\pi}: G \times V' \to V'$ is continuous where V' is equipped with the weak-* topology (the locally convex topology determined by the seminorms $|\varphi|_{v} = |\varphi(\underline{v})|$ where $\underline{v} \in V$
 - (c) Show that $\check{\pi}: G \times V' \to V'$ is continuous where V' is equipped with the *strong topology* (the locally convex topology determined by the seminorms $|\varphi|_E = \sup_{\underline{v} \in E} |\varphi(\underline{v})|$ where E ranges over the bounded subsets of V).
 - RMK If V is a Banach space, the strong topology on V' is exactly the norm topology with respect to the dual norm.
- 3. Let $(\sigma, W) \in \operatorname{Rep}(G)$
 - (a) Show that the natural action $\pi \boxtimes \sigma$ of $G \times H$ on the algebraic tensor product $V \otimes W$ defines an action by linear maps.
 - (b) Show that this action is a continuous representation if V, W are finite dimensional.

Constructions and Characters

Let $(\pi, V), (\sigma, W) \in \operatorname{Rep}(G)$ be finite-dimensional with characters $\chi_{\pi}, \chi_{\sigma}$.

- 4. We compute some characters.
 - (a) Compute the characters of $\pi \oplus \sigma$, $\pi \otimes \sigma$ in terms of $\chi_{\pi}, \chi_{\sigma}$.
 - (b) Let $U \subset V$ be *G*-invariant, and let $\tau(g) = \pi(g) \upharpoonright_U$. Show that $\chi_{V/U} = \chi_{\pi} \chi_{\tau}$.
 - (c) Suppose instead that σ was a representation of a group *H* and compute the character of $\pi \boxtimes \sigma$ as a function on $G \times H$.
- 5. (Symmetric and antisymmetric tensor powers)
 - (a) For $k \ge 2$ show that $\operatorname{Sym}^k V$, $\bigwedge^k V$ are *G*-invariant subspaces of $V^{\otimes k}$.
 - DEF Write Sym^k π , $\bigwedge^{k} \pi$ for the resulting representations.
 - (b) Find the characters of $\operatorname{Sym}^k \pi$

Examples of characters

- 6. Let *G* be a finite group and let *X* be a finite *G*-set.
 - (a) Show that setting $(\pi(g)f)(x) = f(g^{-1} \cdot x)$ defines a linear representation of G on $L^2(X)$ (counting measure).
 - (b) Show that $\chi_{\pi}(g) = \# \operatorname{Fix}(g)$.
- 7. Consider the particular case of $G = S_n$ acting on $[n] = \{1, ..., n\}$.

- (a) Show that $\pi \simeq \mathbb{1} \oplus V$ where $\mathbb{1}$ is the trivial representation on the constant vectors and *V* is the orthogonal complement.
- (b) Compute the character χ of the representation on V, verify that $\langle \chi, \chi \rangle_{L^2(S_n)} = 1$ and conclude that χ is irreducible.
- (c) Use $L^2(G) \simeq \bigoplus_{\pi \in \hat{G}} \pi \boxtimes \check{\pi}$ to show that $\widehat{S}_3 = \{1, V\}$ (hint: dimension count).
- (c) Decompose the representation arising from the action of S_n on the set $[n]^2$ into irreducibles, and connect it to problem 5.