Lior Silberman's Math 535, Problem Set 2: Representation Theory

Basic constructions

1. In each case give a precise definition and show that reuslt is a continuous representation of the appropriate groups. In all cases $(\pi, V) \in \operatorname{Rep}(G)$.
(a) $H \subset G$ a subgroup, $\operatorname{Res}_{H}^{G} \pi$ the restriction of π to H (still acting on V).
(b) $W \subset V$ a closed subspace, $\pi \upharpoonright_{W}$ the restriction of π to W (still a representation of G).
(c) $W \subset V$ a closed subspace, $\bar{\pi}$ the representation of G on V / W.
(d) The representation $\pi \oplus \sigma$ of G on $V \oplus W$ where $(\sigma, W) \in \operatorname{Rep}(G)$ also.
2. Consider the representation $\check{\pi}$ of G on V^{\prime} where $\check{\pi}(g) \varphi=\varphi \circ \pi\left(g^{-1}\right)$.
(a) Show that $\check{\pi}(g): V^{\prime} \rightarrow V^{\prime}$ is linear and that $\check{\pi}(g h)=\check{\pi}(g) \check{\pi}(h)$.
(b) Show that $\check{\pi}$: $G \times V^{\prime} \rightarrow V^{\prime}$ is continuous where V^{\prime} is equipped with the weak-* topology (the locally convex topology determined by the seminorms $|\varphi|_{\underline{v}}=|\varphi(\underline{v})|$ where $\underline{v} \in V$
(c) Show that $\check{\pi}: G \times V^{\prime} \rightarrow V^{\prime}$ is continuous where V^{\prime} is equipped with the strong topology (the locally convex topology determined by the seminorms $|\varphi|_{E}=\sup _{\underline{v} \in E}|\varphi(\underline{v})|$ where E ranges over the bounded subsets of V).
RMK If V is a Banach space, the strong topology on V^{\prime} is exactly the norm topology with respect to the dual norm.
3. Let $(\sigma, W) \in \operatorname{Rep}(G)$
(a) Show that the natural action $\pi \boxtimes \sigma$ of $G \times H$ on the algebraic tensor product $V \otimes W$ defines an action by linear maps.
(b) Show that this action is a continuous representation if V, W are finite dimensional.

Constructions and Characters

Let $(\pi, V),(\sigma, W) \in \operatorname{Rep}(G)$ be finite-dimensional with characters $\chi_{\pi}, \chi_{\sigma}$..
4. We compute some characters.
(a) Compute the characters of $\pi \oplus \sigma, \pi \otimes \sigma$ in terms of $\chi_{\pi}, \chi_{\sigma}$.
(b) Let $U \subset V$ be G-invariant, and let $\tau(g)=\pi(g) \upharpoonright_{U}$. Show that $\chi_{V / U}=\chi_{\pi}-\chi_{\tau}$.
(c) Suppose instead that σ was a representation of a group H and compute the character of $\pi \boxtimes \sigma$ as a function on $G \times H$.
5. (Symmetric and antisymmetric tensor powers)
(a) For $k \geq 2$ show that $\operatorname{Sym}^{k} V, \bigwedge^{k} V$ are G-invariant subspaces of $V^{\otimes k}$.

DEF Write $\operatorname{Sym}^{k} \pi, \Lambda^{k} \pi$ for the resulting representations.
(b) Find the characters of $\operatorname{Sym}^{k} \pi$

Examples of characters

6. Let G be a finite group and let X be a finite G-set.
(a) Show that setting $(\pi(g) f)(x)=f\left(g^{-1} \cdot x\right)$ defines a linear representation of G on $L^{2}(X)$ (counting measure).
(b) Show that $\chi_{\pi}(g)=\# \operatorname{Fix}(g)$.
7. Consider the particular case of $G=S_{n}$ acting on $[n]=\{1, \ldots, n\}$.
(a) Show that $\pi \simeq \mathbb{1} \oplus V$ where $\mathbb{1}$ is the trivial representation on the constant vectors and V is the orthogonal complement.
(b) Compute the character χ of the representation on V, verify that $\langle\chi, \chi\rangle_{L^{2}\left(S_{n}\right)}=1$ and conclude that χ is irreducible.
(c) Use $L^{2}(G) \simeq \bigoplus_{\pi \in \hat{G}} \pi \boxtimes \check{\pi}$ to show that $\widehat{S_{3}}=\{1, V\}$ (hint: dimension count).
(c) Decompose the representation arising from the action of S_{n} on the set $[n]^{2}$ into irreducibles, and connect it to problem 5.
