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Introduction

Lior Silberman, lior@Math.UBC.CA, http://www.math.ubc.ca/~lior
Office: Math Building 229B
Phone: 604-827-3031

0.1. Administrivia

• Problem sets will be posted on the course website.
– To the extent I have time, solutions may be posted on Connect.

• Textbooks
– Warner, Lee
– Bröcker–tom Dieck, Representations of Compact Lie Groups, GTM-98
– Knapp, Lie groups beyond an introduction
– Knapp, Representation Theory of Semisimple Groups

• No exams.
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CHAPTER 1

Basics: Locally compact groups and their representations

REMARK 1. On foundations.

1.1. Topological groups

DEFINITION 2. A topological group is a group object in the category of Hausdorff topological
spaces. A homomorphism of topological groups is a continuous group homomorphism. An action
of the topological group G on the topological space X is a group action · : G×X → X which is
continuous for the product topology on G×X .

Note that the regular action of G on itself is a continuous action by homeomorphisms.

EXAMPLE 3. R, GLn(R), SLn(Q), Qp, CX
2 (X arbitrary!), etc.

LEMMA 4. Suffices to assume T1, that is that {e} ⊂ G is closed.

PROOF. By the invariance of the topology if {e} is closed so is every point, and it is enough
to separate e from g for every g 6= e. Since the group is T1, the set G\{g} is open. By continuity
of the map (x,y) 7→ xy−1 at the identity there is a neighbourhood (e,e) ∈U×V ⊂G×G such that
xy−1 6= g for al (x,y) ∈U×V . Then W =U ∩V works. �

LEMMA 5. Let H ⊂ G be a subgroup. Then the quotient topology on G/H is Hausdorff iff H
is closed.

PROOF. Let q : G→ G/H be the quotient map. If G/H is Hausdorff it is T1 so H = q−1 (H)
is closed. Conversely, if H is closed by invariance it is enough to separate H,gH ∈ G/H. For
that let W ⊂ G be a neighbourhood of the identity such that W−1W ∩gH = /0. It then follows that
W−1WH ∩gH = /0 as well. It follows that the open sets WH and WgH are disjoint, and hence that
their (open) images in G/H are disjoint. �

1.2. Representation Theory

1.2.1. Continuous representations.

DEFINITION 6. A representation π of the topological group G on the TVS Vπ is a continuous
action by linear maps. A unitary representation is a represetation on a Hilbert space Vπ by unitary
maps.

DEFINITION 7. Let (π,V ) and (σ ,W ) be representations of G. An intertwining operator (or
G-homomorphism) between them is a continuous map f : V →W such that

∀g ∈ G : σ(g)◦ f = f ◦π(g) .

We will write HomG (V,W ) for the set of G-homomorphisms, Rep(G) for the category of repre-
sentations and G-homomorphisms.
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LEMMA 8. Let (π,V ) ∈ Rep(G). If W ⊂V is G-invariant then so is its closure W̄ .

DEFINITION 9. Call (π,V ) (topologically) irreducible if its only closed G-invariant subspaces
are the obvious ones.

EXAMPLE 10. Fix a group G.

(1) The trivial representation is the unique representation with V = {0}.
(2) For any reasonable function space, including C(G), L2(G) (if G is locally compact and

unimodular)

1.2.2. Constructions.

LEMMA-DEFINITION 11. Let (π,V ) and (σ ,W ) be representations of G.
(1) For g ∈ G set π̌(g) =t π(g)−1. Then π̌defines a representation of G on the continuous

dual V ′.
(2) Endowing V ⊕W with the product topology, setting (π⊕σ)(g) = π(g)⊕σ(g) defines a

representation.
(3) Suppose U ⊂V is a G-invariant closed subspace. Then setting π̄(g)(v+U) = π(g)v+U

defines a continuous representation of G on V/U.

PROOF. Exercise. �

LEMMA-DEFINITION 12 (Naive tensor product). Let (π,V ) ,(σ ,W ) be representations of G,H

respectively. Then G×H acts on the algebraic tensor product V ⊗W by (π⊗σ)(g,h)
def
= π(g)⊗

σ(h).

REMARK 13. When V,W are finite-dimensional so is V ⊗W and there is no problem with the
topology.

1.2.3. Matrix coefficients.

DEFINITION 14. Let (π,V ) be a representation of G. A matrix coefficient of V is any function

Φv,v′(g) =
〈
π(g)v,v′

〉
where v ∈V , v′ ∈V ′.

REMARK 15. It is always the case that Φv,v′ ∈C(G). Further analytic properties of the matrix
coefficients (smoothness and decay) are very important.

LEMMA 16. The map (v,v′) 7→ Φv,v′ is bilinear; the resulting map V ⊗ V̌ →C(G) is an inter-
twining operator where G×G acts on C(G) the right by ((g1,g2) · f )(x) = f

(
g−1

2 xg1
)
.

PROOF. We only prove the last claim:

Φπ(g1)v,π̌(g2)v′(x) =
〈
π(x)π(g1)v,t π(g−1

2 )v′
〉

=
〈
π(g−1

2 )π(x)π(g1)v,v′
〉

=
〈
π(g−1

2 xg1)v,v′
〉

= Φv,v′(g
−1
2 xg1) .

�
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REMARK 17. We see that abstract representations have concerete models.

DEFINITION 18. Call an irrep (π,V ) discrete series if it is isomorphic to an irreducible sub-
representation of the regular representaiton of G.

EXAMPLE 19. Suppose (π,V ) is unitarizable, in that there is a G-invariant continuous Her-
mitian product on V (so that the completion is a Hilbert space). Equipping V ′ with the dual inner
product, which is also invariant, we see that the matrix coefficients of π are bounded.

1.3. Compact groups: the Peter–Weyl Theorem

In this section G is a compact group, equipped with its probability Haar measure dg.

1.3.1. Finite-dimensional representations: Schur orthogonality. Fix a representation (π,V )
of G where V is finite-dimensional.

LEMMA 20 (Unitarity). There is a G-invariant Hermitian product on V .

PROOF. Let (·, ·) be any Hermitian product on V , and for u,v ∈V set

〈u,v〉=
∫

G
(π(g)u,π(g)v)dg

where dg is the probability Haar measure on G. �

COROLLARY 21. Let W ⊂ V be an invariant subspace. Then it has a complement: another
invariant subspace W⊥ such that V =W ⊕W⊥.

PROOF. Take the orthogonal complement wrt an invariant Hermitian product. �

The following should be compared with the spectral theorem.

THEOREM 22 (Maschke). Every finite-dimensional representation is a direct sum of irre-
ducible subspaces.

PROOF. Let U ⊂ V be maximal wrt inclusion among all subspaces which are direct sums of
irreducibles. If U 6= V then U⊥ is non-trivial; let W ⊂ U⊥ be a non-zero invariant subspace of
minimal dimension. Then W is necessarily irreducible and U⊕W is the direct sum of irreducibles,
a contradiction. �

PROBLEM 23. Isomorphism as abstract, or as unitary, representations?

PROPOSITION 24 (Schur’s Lemma). Let (π,V ) ,(σ ,W ) be finite-dimensional irreducible rep-

resentations of G. Then HomG (V,W )'

{
C π ' σ

0 π 6' σ
.

PROOF. Since the kernel and image of an intertwining operator are invariant subspaces, any
non-zero G-homomorphism from an irrep is injective and to an irrep is surjective. In particular,
if π,σ are non-isomorphic they support no non-zero maps between them. It remains to compute
HomG(V,V ). For this let T ∈ HomG(V,V ), so that π(g)T = T π(g) for all g ∈ G. Since C is
algebraically closed, T has at least one eigenvalue λ ; let Vλ = Ker(T −λ ), a non-trivial subspace
of V . Then for any v ∈ Vλ we have (T −λ )(π(g)v) = π(g)((T −λ )v) = 0 so that π(g)v ∈ Vλ as
well. It follows that Vλ ⊂V is a G-invariant subspace, and hence that Vλ =V and T = λ Id. �
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Now let (π,V ) be finite-dimensional. Every matrix cofficient of π is a continouos function on
the compact space G, hence square-integrable.

PROPOSITION 25 (Schur Orthogonality). Let π,σ ∈ Rep(G) be finite-dimensional irreps.
(1) Any two matrix coefficients of π,σ are orthogonal if π,σ are non-isomorphic.
(2) Let dπ = dimVπ . Then for any v,w ∈V and v′,w′ ∈V ′ we have〈

Φ
π

u,u′,Φ
π

v,v′

〉
L2(G)

=
1

dπ

〈
v,u′
〉〈

u,v′
〉

PROOF. Let T : V →W be any linear map, and let

T̄ =
∫

G
σ(g−1)T π(g)dg .

Then

T̄ π(h) =
∫

G
σ(g−1)T π(gh)dg

=
∫

G
σ(hg−1)T π(g)dg

= σ(h)T̄ .

It follows that T̄ ∈HomG(V,W ). Next, for any v∈V, v′ ∈V ′, w∈W, w′ ∈W ′ let T = |w〉〈v′|. Then〈
w′
∣∣ T̄ |v〉 =

∫ 〈
w′
∣∣σ(g−1) |w〉

〈
v′
∣∣π(g) |v〉dg

=
∫

G
dg〈w|σ(g) |w′〉

〈
v′
∣∣π(g) |v〉

=
〈

Φ
σ

w′,w,Φ
π

v,v′

〉
L2(G)

,

where we have identified W ′ with W via the Riesz representation theorem and the inner product.
(1) Suppose π,σ are non-isomorphic. Then T̄ = 0 and the two matrix coefficients are orthog-

onal.
(2) Suppose V =W , π = σ . Then T̄ = λ Id for some λ ∈ C. Normalizing the Haar measure

on G to be a probability measure, we see that T̄ is the average of conjugates of T so

dπλ = Tr T̄ = TrT =
〈
v′,w

〉
.

Solving for λ it follows that〈
Φ

π

w′,w,Φ
π

v,v′

〉
L2(G)

=
〈
w′
∣∣ T̄ |v〉= λ

〈
w′
∣∣ Id |v〉

=
1

dπ

〈
w′,v

〉〈
v′,u
〉
.

�

COROLLARY 26. 〈χπ ,χσ 〉L2(G) = δπ'σ .

COROLLARY 27. For each finite-dimensional irrep π let C(π) be the space of matrix coeffi-
cients of π . Then ⊕

π

C(π)⊂ L2(G)
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is an orthogonal direct sum.

1.3.2. Infinite-dimensional representations and the Peter–Weyl Theorem. Let (π,V ) be a
continuous representation of the locally compact group G on the quasi-complete locally convex
TVS V .

LEMMA-DEFINITION 28. TFAE for v ∈V , in which case we call it G-finite
(1) SpanC {π(g)v}g∈G ⊂V is finite-dimensional.
(2) There is a finite-dimensional G-invariant subspace W ⊂V with v ∈W.

Furthermore, the set VK of K-finite vectors is a G-invariant algebraic subspace of V .

PROOF. Given (1), set W = SpanC {π(g)v}g∈G to get (2). Given (2), SpanC {π(g)v}g∈G ⊂W
for all G-invariant subspaces W containing v. Finally, if v1,v2 ∈ VK , say with vi ⊂Wi with Wi
G-inv’t and f.d. then αv1 +π(g)v2 ∈W1 +W2 which is G-inv’t and f.d. �

PROPOSITION 29. In a compact group G we have
⊕

π C(π) = L2(G)K , where G acts on L2(G)
via the right-regular representation (Rg f )(x) = f (xg).

PROOF. Since each C(π) is finite-dimensional, their algebraic direct sum is contained in C(G)K ⊂
L2(G)K . Conversely, let W ⊂L2(G) be a right-G-invariant finite-dimensional subpsace. By Maschke’s
Theorem 22, W is the direct sum of irreducible subpsaces so without loss of generality it suffices
to show W ⊂

⊕
π C(π) for irreducible W .

Now let { fi}d
i=1 ⊂W be an orthonormal basis. Then for f ∈W and g ∈ G we have Rg f ∈W

and hence

Rg f =
d

∑
i=1

ai(g) fi

for some ai(g) ∈ C. In fact,

ai(g) =
〈

fi,Rg f
〉

L2(G)
= Φ

W
fi, f (g) ∈ C(W )

and we conclude that for fixed g

Rg f =
d

∑
i=1

Φ
W
fi, f (g) fi

(the sum in W ⊂ L2(G)). In other words, given g it holds for almost every x ∈ G that

f (xg) =
d

∑
i=1

Φ
W
fi, f (g) fi(x) .

If the identity held for all x we could set x = e and write f as a linear combination of matrix
coefficients. To get around this difficulty consider both sides as functions on G×G. Now both
sides are in L2(G×G), so by Fubini they are equal a.e. Applying Fubini in the other order it
follows that for almost every x ∈ G we have f (xg) = ∑

d
i=1 ΦW

fi, f (g) fi(x) for almost every g ∈ G,
and that is the desired claim. �

DEFINITION 30. For f ∈Cc(G) and v ∈V set π( f )v by

π( f )v =
∫

G
f (g)π(g)vdg .
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LEMMA 31. π( f ) : V →V is a continuous linear map, and f 7→ π( f ) is a continuous algebra
homomorphism Cc(G)→ End(V ) where Cc(G) is equipped with the convolution product and the
direct limit topology.

PROOF. Scaling, we may assume | f (g)| ≤ 1 for all g. Let U ⊂ V be a closed convex neigh-
bourhood of zero. Then for each g ∈ supp( f ) there are neighbourhoods g ∈Wg ⊂ G and (convex)
0 ∈Ug ⊂ V such that π(x)u ∈ 1

volsupp( f )U for all x ∈Wg, u ∈Ug. Covering supp( f ) with ∪r
i=1Wgi

and setting Ū = ∩r
i=1Ugi we see that for all g ∈ supp(g) and v ∈ Ū , f (g)π(g)v ∈ 1

volsupp( f )U . It
follows that π( f )v ∈U .

Rest proved similarly. �

COROLLARY 32. Let { fn} ⊂Cc(G) be an approximate identity. Then π( fn)v→ v.

EXAMPLE 33 (Smoothing). Let V ⊂ L2(G) be a closed G-invariant subspace. Then V ∩C(G)
is dense in G.

PROOF. It suffices to show that π( f )ϕ ∈C(G) for each f ∈Cc(G), ϕ ∈ L2(G). Indeed,

(π( f )ϕ)(x) =
∫

f (g)ϕ(g−1x)dg

=
∫

f (xg)ϕ(g−1)dg

so that

|(π( f )ϕ)(x)− (π( f )ϕ)(y)| =

∣∣∣∣∫ δ (g)
(

f (xg−1)− f (yg−1)
)

ϕ(g)dg
∣∣∣∣

≤
∥∥δ (g)

(
f (xg−1)− f (yg−1)

)∥∥
L2(G)

‖ϕ‖L2(G)

−−→
y→x

0

since f is uniformly continuous and δ is bounded on any compact set.
Suppose now that G is compact. �

THEOREM 34 (Peter–Weyl I). We have

L2(G) =
⊕̂

π

C(π) .

PROOF. Let V = (
⊕

π C(π))
⊥ and note that V is a subrepresentation of

(
L2(G),R

)
. If V 6= {0}

let f ∈ V be non-zero, and by continuity of the G-action on L2(G) let U ⊂ G be a symmetric,
conjugation-invariant neighbourhood of 1 such that ‖Ru f − f‖2 ≤ 1

2 ‖ f‖. Let χ ∈Cc(U) be pos-
itive, satisfy χ(u) = χ(u−1), integrate to 1 and be conjugation invariant. Then ‖R(χ) f − f‖2 ≤
1
2 ‖ f‖ and in particular R(χ) : V →V is a non-zero operator. It is also self-adjoint and compact. By
the spectral theorem its eigenspaces are finite-dimensional and it follows that V contains G-finite
vectors, a contradiction. �

COROLLARY 35 (Peter–Weyl II).
⊕

π Cc(π) is dense in C(G).

PROOF. Since the matrix coeffs of the tensor product are products, this is a subalgebra closed
under complex conjugation and it suffices to show it separates the points. By G-invariance it
suffices to separates ponts from the identity.
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For this consider
⋂

π Ker(π). Every f ∈ L2(G) is invariant by this closed subgroup, so it’s
trivial. It follows that for any g ∈ G there is π such that π(g) 6= id. Let v ∈ Vπ be of norm 1 such
that π(g)v 6= v. Then by unitarity 〈π(g)v,v〉 6= 1 and hence

Φv,v(g) 6= 1 .

�

THEOREM 36 (Peter–Weyl II). Every irrep of G is finite-dimensional; for any representation
VK is dense in V .

PROOF. Clearly the second assertion implies the first. We first note that the argument of The-
orem 34 shows that {π(χ)v | v ∈V, χ ∈C(G)} is dense in V . Now to see that VK is dense in
V it suffices to show that VK = {π( f )v | v ∈V, f ∈C(G)G} is dense. For that note that for any
neighbourhood W ⊂V of zero, if f is ε-close to χ for ε small enough then π( f −χ)v ∈W . �
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CHAPTER 2

Lie Groups and Lie Algebras

2.1. Smooth manifolds

2.1.1. Manifolds.

DEFINITION 37. Let U ⊂ Rn be open. Then C∞(U ;Rm) is the set of infinitely differentiable
Rm-valued functions on U .

DEFINITION 38. A coordinate chart (or patch) in a topological space M is a pair (U,ϕ) where
U ⊂M is open and ϕ : U → Rn is a homeomorphism onto an open subset of Rn. Two coordinate
patches (U1,ϕ1) ,(U2,ϕ2) are compatible if ϕ1 �U1∩U2 ◦(ϕ2 �U1∩U2)

−1 is a smooth map.
An altas on M is a covering of M by compatible coordinate patches. A smooth manifold is a

pair (M,A) where M is a second countable topological space and A is an atlas on M.

EXAMPLE 39. Rn, Sn, Tn.

LEMMA 40. If two charts are compatible with an atlas they are compatible with each other.

COROLLARY 41. Every atlas is contained in a maximal atlas, namely the set of all charts
compatible with the given atlas.

DEFINITION 42. A maximal atlas is also known as a smooth structure on M.

EXAMPLE 43. Exotic spheres.

LEMMA 44. If m 6= n Rm,Rn are not locally homeomorphic so for a connected manifold the
dimension need not be assumed constant.

DEFINITION 45. Let M,N be smooth manifolds. A map f : Mm→ Nn is smooth if for every
charts (U,ϕ) of M and (V,ψ) of N, ψ ◦ f ◦ϕ−1is smooth.

LEMMA 46. Composition of smooth maps is smooth.

2.1.2. Tangent and contagent spaces. Fix a vector space k.

DEFINITION 47. A Lie algebra over k is a k-vector space g together with a bilinear form
[·, ·] : g×g→ g satisfying:

(1) (alternating)[X ,X ] = 0
(2) (Jacobi identity) [[X ,Y ] ,Z]+ [[Y,Z] ,X ]+ [[Z,X ] ,Y ] = 0.

EXAMPLE 48 (Standard constructions). Let A be an associative k-algebra. We get two natural
Lie algebras from it:

(1) A itself, equipped with [a,b] = ab−ba.
(2) Call d ∈ Endk-vsp(A) a derivation if d(ab) = d(a)b+ad(b). Then the spaceDA of deriva-

tions is a Lie subalgebra of Endk-vsp(A).
12



(3) One canonical example: A = C∞(M); then DM
def
= DC∞(M) is called the set of (smooth)

vector fields on M.

LEMMA 49 (Localization of vector fields). Let X ∈ DM, f ,g ∈C∞(M).
(1) Let f be constant. Then X f ≡ 0.
(2) Let f (p) = 0. Then

(
X f 2)(p) = 0.

(3) Let f be constant in a neighbourhood of p. Then (X f )(p) = 0. In particular, if f = g in
a neighbourhood of p then X f (p) = Xg(p).

PROOF. Say f (p) = 1 for all x. Then X f = X
(

f 2) = 2 f ·X f = 2X f . It follows that X f ≡ 0.
Simliarly, if f (p) = 0 then

(
X f 2)(p) = 2 f (p)X f (p) = 0.

Let U be a neighbourhood of p ∈ U and suppose f �U≡ 1. Choose g ∈ C∞
c (U) such that

g(p) 6= 0. Since f g = g we have X f · g+ f ·Xg = Xg, Evaluating at p we get X f (p)g(p) = 0 so
X f (p) = 0. �

LEMMA-DEFINITION 50. Ip = { f ∈C∞(M) | f (p) = 0} is a maximal ideal of C∞(M).

LEMMA-DEFINITION 51 (Hadamard). The contagent space T ∗p M = Ip/I2
p is a vector space of

dimension n and
⋃

p∈M T ∗p M is a vector bundle, the contagent bundle.

PROOF. Let f vanish in a neighbourhood U of p, and let g ∈C∞
c (U) vanish at p as well. Then

f = f g ∈ I2
p. It follows that f ,g ∈C∞(M) agree in a neighbourhood of p then f −g ∈ I2

p. We can
now work locally, in particular near 0 ∈ Rn. We next show that every class in Ip/I2

p has a linear
representative. Indeed let f be smooth in a neighbourhood of 0 ∈ Rn and set g(t) = f (tx). Then

f (x)− f (0) = g(t)−g(1) =
∫ 1

0
g(t)dt

=
∫ 1

0
x ·∇f (tx)dt

=
n

∑
i=1

xi ·
∫ 1

0

∂

∂xi f (tx)dt

= ∇ f (0) · x+
n

∑
i=1

xihi

where hi(x) =
∫ 1

0
∂

∂xi f (tx)dt− ∂ f
∂xi (0) ∈ I0. It follows that

f (x)− f (0)−∇ f (0) · x ∈ I2
p .

To see that the linear functions inject into Ip/I2
p (so that the dimension is n) note that each linear

function has a non-zero directional derivative, but that operation is a derivation in C∞(U) (U ⊂Rn)
and vanishes on elements of I2

p. �

LEMMA-DEFINITION 52 (The tangent space). The linear dual TpM = HomR
(
T ∗p M,R

)
is

called the tangent space. The resulting bundle is called the tangent bundle.
(1) The pairing (X , f ) 7→ X f (p) associates to each vector field X a linear functional on T ∗p X.
(2) The resulting map DM→

(
T ∗p M

)′ is surjective.

CONCLUSION 53. In local coordinates, a vector field is an operator of the form ∑
n
i=1 ai(x) ∂

∂xi .
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EXERCISE 54. TpM is also the space of derivations on the algebra of germs of smooth functions
at p.

PROPOSITION 55 (Canonical sheaf). (1) Let X be a vector field on M, U ⊂M an open set.
For f ∈C∞(U) and p ∈U let h ∈C∞

c (U) such that h ≡ 1 near p and set (X �U f )(p) =
(X (h f ))(p) (note that h f ∈C∞

c (M)). Then X �U is a well-defined vector field on U and
X 7→ X �U is a map of lie algebras.

(2) (Patching) Let {Ui}i∈I be an open cover of M. Let X ,Y be a vector fields on M and
suppose that X �Ui= Y �Ui for all i then X = Y .

(3) (Gluing) Let {Ui}i∈I be an open cover of M and suppose given for each i a vector field Xi
on Ui such that Xi �Ui∩U j= X j �Ui∩U j for all i, j. Then there is a vector field X on M such
that Xi = X �Ui .

2.1.3. Derivatives of maps.

LEMMA-DEFINITION 56. Let ϕ : M→ N be a smooth map. Let p ∈ M and v ∈ TpM. Then
the map dϕp(v) : C∞(N)→ R given by f 7→ v( f ◦ϕ) is a local derivation at ϕ(p). It is called the
differential of ϕ . The map dϕp : TpM→ Tϕ(p)N is linear and extends to a smooth map dϕ : T M→
T N compatible with ϕ . The construction is functorial (in other words, the chain rule holds).

THEOREM 57 (Inverse and implicit function theorems). Let ϕ : M→ N be smooth.
(1) Suppose dϕp is injective. Then ϕ is injective in a neighbourhood of p.
(2) Suppose dϕp is a surjective. Then ϕ is an open map in a neighbourhood of p.
(3) Suppose dϕp is an isomorphism. There are open neighbourhoods of p and ϕ(p) for which

ϕ is a diffeomorphism.
(4) Suppose dϕp is surjective for p on a level set P = ϕ−1(n). Then the level set is a subman-

ifold of dimension dimN−dimM.

DEFINITION 58. A smooth map f : M→ N is a:
(1) Submersion if d fp is injective for every p ∈M.
(2) Local embedding if it is a submersion and for every p ∈U ⊂ M there is f (p) ∈ V ⊂ N

such that f � f−1(V ) is a homeomorphism onto its image (with the relative topology)
(3) An embedding if it is an injective immersion which is a homeomorphism onto its image.
(4) A diffeomorphism if it has a smooth inverse.

DEFINITION 59. A parametrized submanifold of N is a pair (M, f ) where f : M → N is an
injective submersion. Two parametrizations (M1, f1) ,(M2, f2) are equivalent if they are conjugate
by a diffeomorphism of M1,M2. A submanifold of N is an equivalence class.

If (M, f ) is a parametrized submanifold N then T (N) = f∗(T M) is a subbundle of T N �M. It is
independent of the choice of parametrization. Conversely, we’d like to investigate when a choice
of subspace of TpM at each p corresponds to a submanifold.

DEFINITION 60. Let γ : [a,b]→M be a smooth curve. We then set γ̇(t) = dγ

(
∂

∂ t

)
(t). We say

γ is an integral curve of X ∈ DM if γ̇(t) = X (γ(t)) for each t.

• The Picard Theorem on ODE shows that for any X and p ∈M there is an integral curve of
X through p living on an interval about 0, and that any two integral curves with γ(0) = p
agree on their interval of definition.
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We now generalize this from 1-dimensional submanifolds to higher dimension.

DEFINITION 61. A distribution of dimension k on M is equivalently either of:
(1) A smooth choice of k-dimensional subspaces Vp ⊂ TpM for each p ∈M.
(2) A smooth section of the Grassmanian bundle, or a subbundle of T M.
(3) For a covering set of neighbourhoods U ⊂M choices of vector fields {Xi}k

i=1⊂DU so that
for each p ∈U , {Xi(p)} ⊂ TpM are linearly independent and so that Vp = SpanR {Xi(p)}i
is independent of U as long as p ∈U .

Call a vector field X ∈ DM a section of the distribution V if (1) Xp ∈ Vp for each p iff (2) it is a
section of the subbundle (3) For each U there are ai ∈C∞(U) so that X �U= ∑i aiXi.

DEFINITION 62. Call a submanifold
(
Nk,ϕ

)
of M tangent to the distribution V if for each

p ∈ N, dϕp is an isomorphism of TpN and Vϕ(p) ⊂ Tϕ(p)M.

OBSERVATION 63. Suppose N ⊂M is tangent to V , and let X ,Y be sections of V . We can then
think of X ,Y as vector fields on N, so that [X ,Y ] is a vector field on N as well. It follows that [X ,Y ]
is also a section of V .

In fact, this necessary condition is also sufficient:

THEOREM 64 (Frobenius). The following are equivalent for a distribution V on M:
(1) Through each p ∈M there is a unique (up to equivalence) submanifold tangnet to V ; this

submanifold is injectively submersed.
(2) The distribution is completely integrable: for every two sectoins X ,Y of V , the vector field

[X ,Y ] is also a section.

REMARK 65. In the local view above it suffices to check that the integrability condition on the
spanning fields:

[
Xi,X j

]
= ∑k akXk for some ak ∈C∞(U).

2.2. Lie groups

DEFINITION 66. A Lie group is a group object in the category of smooth manifolds, in other
words a smooth manifold G together with smooth maps · : G×G→ G and −1 : G→ G such that(
G, ·,−1 ) is an abstract group. A homomorphism of Lie group is an abstract homomorphism which

is also a smooth map.

EXAMPLE 67. The basic example is R, but we also have:

(1) Rn, (R/Z)n = Rn/Zn

(2) GLn(R), SLn(R), GLn(C), Sp2n(R)
(3) O(n), SO(n), SO(Q) = SO(p,q), U(n), SU(n)
(4) Direct and semidirect products.
(5) Isom(En), Isom(M,g)
(6) Affn(R)

DEFINITION 68. An action of a Lie group G on a smooth manifold M is a smooth map · : G×
M→M which is a group action.

DEFINITION 69. A Lie subgroup H of the Lie group G is a subgroup H < G which is also a
submanifold, in other words the image of an injective immersion of Lie groups.
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EXAMPLE 70. Lie of irrational slope on a torus.

REMARK 71. There is some play in the joints here.
(1) Enough to assume C2, and may assume real-analytic (any C2 structure is compatible with

a unique smooth, even real-analytic, structure).
(2) Sophus Lie actually considered local Lie group actions.

2.3. Lie Algebras and the exponential map

2.3.1. Lie algebra. The Lie group G acts on itself by left multiplication. This regular action
is a smooth action. In particular each g ∈ G acts by translation on the set of vector fields of G, and
we call a vector field X left-invariant if g ·X = X . Recall that for any manifold we have a surjective
map {DM}→ TpM.

LEMMA 72. Restricting this map to the left-invariant vector fields on G gives a linear isomor-
phism {left-invariant vector fields on G}→ TeG.

PROOF. For the inverse map, for any manifold M a smooth action of G on M extends to a
smooth action on T M by g · (p,v) = (gp,dg(v)) where dg is the derivative of the map g· : M→M.
In particular, G acts on T G . Now for v ∈ TeG the orbit g 7→ g · (e,v) is a smooth left-invariant
vector field. �

Note that if X ,Y are left-invariant so is [X ,Y ].

DEFINITION 73. The Lie algebra of G is the Lie algebra of left-invariant vector fields, equiv-
alently the same Lie algebra realized as the tangent space TeG. We write g = Lie(G) for the Lie
algebra.

THEOREM 74. If f ∈ Hom(G,H) then d f : g→ h is a Lie algebra homomorphism.

LEMMA 75. A connected Lie group is generated by any open subset

THEOREM 76. Every subalgebra exponentiates to a subgroup

PROOF. The distribution defined by the subalgebra is integrable, so apply Frobenius. The leaf
through the origin is self-invariant, hence a subgroup. �

2.3.2. Exponential map.

LEMMA-DEFINITION 77. The integral curves through left-invariant vector fields live forever.
Write the integral curve through X ∈ g as t 7→ exp(tX).

REMARK 78. Uniqueness of integral curves shows that indeed this only depends on tX ∈ g
rather than on t,X separately.

PROPOSITION 79. exp: g→ G is a local diffeomorphism with derivative Id.

PROOF. Differentiate ODE and inverse function theorem �

LEMMA 80. Homomorphisms repsect the exponential map

PROOF. f (exp(tX)) is an integral curve of d f (X). �

PROPOSITION 81. Exponential map of GLn(R) is given by the matrix exponential.
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2.4. Closed Subgroups

THEOREM 82 (Cartan 1930). Let H < G be a closed subgroup. Then H is a Lie subgroup (in
particular, a submanifold of G).

PROOF. Let h = {X ∈ g | ∀t ∈ R : exp(tX) ∈ H}. Then h ⊂ g is closed under scaling. Also,
Z(t) = log(exp(tX)exp(tY )) has Z(0) = 0, Z′(0) = X +Y so Z(t) = t(X +y)+O(t2) and it follows
that exp(t(X +Y )) ∈ H. Now exp: h→ H is locally bijective (use local exponential coordinateS)

�

LEMMA 83. Let V ⊂ G be a small enough neighbourhood of the identity. Then

THEOREM 84. Let H be a closed connected subgroup of G. Then G/H has a unique manifold
structure such that π : G→G/H is smooth. Furthermore, the regular action of G on G/H is a Lie
group action.

THEOREM 85. A map of Lie groups is a covering iff its derivative is an isomorphism

PROOF. A covering map is a local diffeo, hence gives isom of Lie algebras. Conversely, let
d f = d fe be an isomorphism for f : G→ H. By homogeneity d fg is injective for each g ∈ G so f
is a local diffeomorphism. The kernel Γ = Ker( f ) is a closed subgroup, which is zero-dimensional
hence discrete. Let U ⊂G be a small enough neighbourhood so that its translates by Γ are disjoint
and such that f �U is a diffeo. Then f−1 ( f (U))' Γ×U . �

THEOREM 86. Let d f : g→ h be a Lie algebra homomorphism. If G is simply connected and
H is connected then this lifts to f .

PROOF. Realize the graph of f as a subgroup of G×H corresponding to a lie subalgebra.
Projection on G, so the graph is a function. �

THEOREM 87 (Ado). Every finite-dimensional Lie algebra has a faithful representation into
gln(R) .

PROOF. Adjoint gives a representation mod centre �

COROLLARY 88. Every Lie algebra is the Lie algebra of some group.

THEOREM 89. Let H < G be a closed subgroup. Then G/H has a unique manifold structure
such that the quotient map is smooth.

PROOF. Local exponential coordinates. �

2.5. The adjoint representation

DEFINITION 90. Let g ∈G. Then Adg : G→G given by Adg(x) = gxg−1 is an automorphism,
in particular a group homomorphism. We also write Adg for its derivative, Adg : g→ g.

LEMMA 91. Ad: G→ GL(g) is a smooth representation.

DEFINITION 92. Write ad : g→ End(g) for the derivative of the adjoint representation.

THEOREM 93. adX ·Y = [X ,Y ].

17



PROOF. Since ad is the derivative of Ad, exp(t adX) = Adexp(tX) in GL(g). It follows that

adX ·Y =
d
dt

∣∣
t=0 Adexp(tX)Y

=
d
dt

∣∣
t=0

d
ds

∣∣
s=0 Adexp(tX) exp(sY )

=
d
ds

∣∣
s=0

d
dt

∣∣
t=0 exp(tX)exp(sY )exp(−tX)

=
d
ds

∣∣
s=0

(
Xe · (exp(sY ))∗−Xexp(sY )

)
.

More precisely, this means that for f ∈C∞(G),

〈d fe,adX ·Y 〉=
d
ds

∣∣
s=0

〈
d fexp(sY ),Xe · (exp(sY ))∗−Xexp(sY )

〉
.

Now
d
ds

∣∣
s=0

〈
d fexp(sY ),Xe · (exp(sY ))∗

〉
=

d
ds

∣∣
s=0

〈
d(Rexp(sY ) f )e,Xe

〉
=

〈
d
ds

∣∣
s=0d (g 7→ f (gexp(sY )))e ,Xe

〉
=(XY f )(e)

and
d
ds

∣∣
s=0

〈
d fexp(sY ),Xexp(sY )

〉
= (Y X f )(e)

so we are done. �

COROLLARY 94. ad : g→ End(g) is a Lie algebra representation: ad[X ,Y ] = [adX ,adY ].

PROOF. This follows immediately from the Jacobi identity. �

COROLLARY 95. Let H < G be connected Lie groups. Then H is normal iff h is a Lie ideal.

PROOF. If H is normal then H is Ad-stable hence h is Ad-stable hence h is ad-stable. Con-
versely, for X close enough to the origin we have exp(adX) = ∑

∞
k=0

1
k! (adX)

k. Now if h is adX -
stable it follows that it is also exp(adX)-stable and hence AdexpX -stable. But by the group-algebra
correspondence this means H is AdexpX -stable. Since the small X generate G we are done. �

COROLLARY 96. Let G be connected. Then Z(G) = ker(Ad: G→ GL(g)).

PROOF. g ∈G is central iff for all small enough X , gexpXg−1 = expX iff exp(Adg X) = expX
iff Adg X = X . �

COROLLARY 97. Let G be connected. Then g is abelian iff G is abelian iff exp: g→ G is a
surjective group homomorphism.

PROOF. If adX = 0 for all X then exp(adX) = Id for all X so a neighbourhood of the identity
is contained in Ker(Ad). If G is abelian let X ,Y ∈ g. Then t 7→ exp(tX)exp(tY ) is a group ho-
momorphism R→ G. Since its derivative at t = 0 is X +Y we conclude that exp(tX)exp(tY ) =
exp(t(X +Y )). Now setting t = 1 shows that exp is a homomorphism, and since the image con-
tains a generating set it’s surjective. Finally, if exp is a surjective homomorphism then its image G
is abelian. �

THEOREM 98. A connected abelian Lie group is of the form Rn×Tn.

PROOF. Ker(exp) is a discrete subgroup of Rd . �
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CHAPTER 3

Compact Lie groups

3.1. Linearity

As an application of our representation theory of compact groups we get:

THEOREM 99. Every compact Lie group has a faithful finite-dimensional representations.
Equivalently, every compact group is isomorphic to a closed subgroup of some U(n).

PROOF. The representation of G on L2(G) is faithful. By Peter–Weyl it follows that
⋂

π∈Ĝ Ker(π)=
{e}. Let �

3.2. Characters and cocharacters of tori

Let Rn/Zn, Rm/Zm be tori. We’d like to study Hom(Rn/Zn,Rm/Zm). The cases m = 1 (char-
acters) and m = n (automorphisms) are particularly important.

First, let f : Zn→ Zm be a group homomorphism. Extending scalars gives a homomorphism
fR = f ⊗Z 1 : Zn⊗R→ Zm⊗R. Since fR (Zn) = f (Zn)⊂ Zm, fR descends to a homomorphism
f̄ : Rn/Zn→ Rm/Zm.

LEMMA 100. The map f 7→ f̄ is an isomorphism Hom(Zn,Zm)→ Hom(Rn/Zn,Rm/Zm).

PROOF. We need to construct the inverse map. For this let expn : Rn→ Rn/Zn be the quotient
map, which is also the exponential map of this commutative Lie group with kernel Zn. Then
given f̄ ∈ Hom(Rn/Zn,Rm/Zm) consider the linear map d f̄ ∈ Hom(Rn,Rm). The usual identity
f̄ (expn X) = expm

(
d f̄ (X)

)
here reads expm ◦d f = f̄ ◦ expn, in other words that d f̄ (Zn)⊂ Zm and

hence that f = d f̄ �Zn is the desired element of Hom(Zn,Zm). �

COROLLARY 101. Aut(Tn)'Mn(Z)× = GLn(Z). In particular, Aut(Rn/Zn,Rm/Zm) is dis-
crete.

COROLLARY 102. T̂n = Hom
(
Tn,S1) = {e(k · x)}k∈Ẑn where Ẑn = Hom(Zn,Z) is the dual

lattice, and e(z) = e2πiz.

PROOF. z 7→ e(z) is an isomorphism R/Z→ S1. �

LEMMA 103. Tori are topologically generated by single elements.

PROOF. Let {1}∪{ξi}n
i=1 ⊂ R be linearly independent over Q. Then ξ is such an element. In

fact (Weyl equidistribution) every orbit
{

x+ jξ
}∞

j=1
is equidistributed in the torus. �
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3.3. The exponential map

From now on let G be a compact connected Lie group, g its Lie algebra, and let Ad: G→GL(g)
be the adjoint representation. Since G is compact we may fix a G-invariant inner product (and
associated Euclidean norm) on g.

LEMMA 104. A connected compact Lie group has a bi-invariant Riemannian metric

REMARK 105. The map g 7→ g−1 is an isometry of this metric. In other words, we have a
symmetric space. (c.f. PS ??)

PROPOSITION 106. Fix a bi-invariant metric on G. Then the Riemannian and Lie exponential
maps agree.

PROOF. Let γ(t) be a Riemannian geodesic based at the origin. Then t 7→ γ(t0 + t), t 7→
γ(t0)γ(t) and t 7→ γ(t)γ(t0) are also geodesics (because the group acts by isometries) which meet
at t = 0 and have the same derivative at that time. It follows that γ(t0 + t) = γ(t0)γ(t), that is that
the geodesic is a one-parameter subgroup. �

COROLLARY 107. The exponential map of a connected compact Lie group is surjective.

COROLLARY 108. The intersection of two connected subgroups is connected.

PROOF. The Lie algebra of the intersection is the intersection of the Lie algebras. �

3.4. Maximal Tori

Fix a compact connected Lie group G. A torus in G is a subgroup T of G isomorphic to Tn for
some n. Being compact tori are always closed.

LEMMA 109. Every g ∈ G is contained in a torus.

PROOF. Suppose g = exp(X) for X ∈ g. Then {exp(tX)}t∈R is a connected commutative sub-
group of G. Its closure is a connected commutative compact group, that is a torus. �

LEMMA 110. Let T be a torus in G, and let t be its Lie algebra. Then:
(1) ZG(T ) is connected.
(2) ZG(t) = ZG(T )
(3) LieZG(T ) = Zg(t).
(4) NG(T )◦ = ZG(T ).

PROOF.
(1) Let t ∈ T generate a dense subgroup, so that ZG(t) = ZG(T ). Embed G in U(n). Wlog

the image of t is diagonal and then ZU(n)(t) is block-diagonal, in particular connected. It
follows that ZG(T ) = ZG(t) = G∩ZU(n)(t) is connected.

(2) If g ∈ ZG(T ) then Adg ∈ Aut(T ) being trivial means that Adg ∈ Aut(t) is trivial. Con-
versely, the exponential map of T is surjective and for any H ∈ t and g ∈ ZG(t) we have

Adg (expH) = exp(Adg H) = expH .

(3) If X ∈ Zg(t) then for any s ∈ R, Adexp(sX) �t= exp(adsX �t) = exp(0) = Id and hence
exp(sX) ∈ ZG(t) and X ∈ Lie(ZG(t)). Conversely, suppose that Adexp(sX) ∈ ZG(t) for all
s. Differentiating with respect to s we get that adX �t= 0 that is that X ∈ Zg(t).
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(4) Finally, let NG(T ) act on T by conjugation. This gives a continuous homomorphism
NG(T )→ Aut(T )' GLr(Z). Since the latter group is discrete, the connected component
is in the kernel and hence NG(T )◦ ⊂ ZG(T ). Since ZG(T )⊂ NG(T ) is connected we also
have the reverse inclusion.

�

3.4.1. Maximal tori. Fix a connected compact Lie group G.

DEFINITION 111. A maximal torus in G is a torus in G, maximal wrt inclusion.

LEMMA 112. Every element g ∈ G is contained in a torus.

PROOF. Suppose g = exp(X) for x ∈ g. Then the closure of {exp(tX)}t∈Ris an abelian sub-
group, hence a torus. �

COROLLARY 113. Every element of g is contained in a maximal torus.

Fix a maximal torus T .

COROLLARY 114. NG(T )◦ = ZG(T ) = T .

PROOF. Let g ∈ ZG(T ) not belong to T . Then there is a torus S⊂ ZG(T ) such that g ∈ S. Then
ST is a torus propely containing T . �

DEFINITION 115. The Weyl group of G is W (G : T ) def
= NG(T )/ZG(T ) = NG(T )/T .

THEOREM 116. All maximal tori of G are conjugate.

PROOF. Let S,T be maximal tori and let X ∈ LieS, Y ∈ LieT be generic elements (that is
expX ,expY are topological generators of the respective groups). Equip g = LieG with a G-
invariant inner product, and let g ∈ G minimize

f (g) = ‖Ad(g)X−Y‖2 .

Expressing f as:

f (g) = ‖Ad(g)X‖2 +‖Y‖2−2〈Ad(g)X ,Y 〉

= ‖X‖2 +‖Y‖2−2〈Ad(g)X ,Y 〉
we see that we are minimizing 〈Ad(g)X ,Y 〉. Suppose the minimum is at g0, and consider the
derivative there. For every Z ∈ g the derivative in the direction Z is:

〈adZ · (Ad(g0)X) ,Y 〉 .
Letting X0 = Ad(g0)X we see that

0 = 〈adZ · (Ad(g0)X) ,Y 〉
= 〈[Z,X0] ,Y 〉=−〈[X0,Z] ,Y 〉
=−〈adX0 ·Z,Y 〉
= 〈Z,adX0 ·Y 〉= 〈Z, [X0,Y ]〉

where we use that in every unitary representation π , dπ(X) is anti-hermitian. Since Z is arbitrary,
we see that [X0,Y ] = 0. This means that X0 ∈ Zg(Y ) = t. But since X0 is generic for g0Sg−1

0 we
conclude that g0Sg−1

0 = T . �
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COROLLARY 117. T/W = G/Ad(G).

PROOF. Fix a maximal torus T . Every g ∈ G generates an abelian subgroup, hence contained
in a maximal abelian subgroup, which is conjugate to T . It follows that every conjugacy class has
a representative in T , so T/W surjects on the set of conjugacy classes. Conversely, let t, t ′ ∈ T be
conjugate in G. �

3.4.2. Example: three-dimensional groups. Let G = SU(2) act on C2. The action on S3 is
simply transitive, so SU(2) ' S3; in particular it is simply connected. Now Z(SU(2)) = {±I} ,so
the groups it covers are SU(2) and its image by the adjoint representation.

LEMMA 118. The maximal tori are the maximal subalgebras of SO(3).

PROOF. Let t = Span
(

−1
1

)
. Then the action of t on its orthogonal complement in so(3)

is irreducible. �

PROPOSITION 119. Let G be a three-dimensional connected compact Lie group. Then G covers
SO(3).

PROOF. Consider the adjoint representation Ad: G→ GL(g). Choosing a G-invariant inner
product on g, the image lies in O(3), in fact in SO(3) since it is connected. We consider the Lie
algebra of the image. The group

We show that the image is three-dimensional, so it equals SO(3) exactly. Can’t be a torus (then
g/Zg is cyclic) and can’t be trivial (g is noncommutative). �

3.5. Roots and weights

3.5.1. Weights. Let T be a torus. Let (π,V ) be a finite-dimensional representation of T on a
complex vector space. By the theory for general compact groups we have a direct sum decompo-
sition

V =⊕
χ∈T̂Vχ .

Since T is commutative, T̂ =Homcts
(
T,S1) and Vχ = {v ∈V | π(t)v = χ(t)v}. We call

{
χ ∈ T̂ |Vχ 6= {0}

}
the exponential weights of V , Vχ the weight spaces.

We now find an alternative parametrization of T̂ . For this let t be the Lie algebra, exp: t→ T
the exponential map. We have seen that exp is also the universal covering map of T ; we write Λ

for its kernel and call it the integral lattice.
Identify the Lie algebra of S1 with R so that the exponential map is e(z) = e2πiz. For a char-

acter χ ∈ T̂ write α = dχ ∈ t∗ = Hom(t,R) for its derivative, giving the following commutative
diagram:

t
exp
//

α

��

T

χ
��

R e // S1

Now χ ◦ exp vanishes on Λ, and it follows that α(Λ)⊂ ker(e) = Z. The converse is also clear, so
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CONCLUSION 120. χ ∈ T̂ iff α ∈ Λ∗ = {ν ∈ t∗ | ν(Λ)⊂ Z} ' Hom(Λ,Z).
We call Λ∗ the weight lattice of T , and from now on we index weight spaces with the weights

α ∈ Λ∗ rather than the corresponding exponential weights χα ∈ Hom
(
T,S1). Explicitely given

α ∈ Λ∗ and H ∈ t we have χα (expH) = e2πiα(H).

3.5.2. Complexification. Suppose now that T acts on a real vector space V . Since every non-
trivial character of T takes complex values, V realizes no character of T , and we consider the
complexification VC = C⊗RV .

The complex conjugation operator z 7→ z̄ of C then extends to an operation v 7→ v̄ on VC (fixing
the image of V in VC), and also EndC(VC) (fixing the image of EndR(V ) there).

EXERCISE 121. A (C-linear) subspace W ⊂ VC is of the form UC for an (R-linear) subspace
U ⊂V iff W =W .

The T -action on V then extends to a T -action on VC, so we may write VC =
⊕

α∈Λ∗Vα . Then
for any H ∈ t and v ∈Vα we have

π (exp(H)) · v = e2πiα(H)v .

Taking complex conjugates it follows that

π (exp(H)) · v̄ = e−2πiα(H)v̄ ,

in other words that v̄ ∈ V−α . We conclude that α 6= 0 is a weight iff −α is a weight and that
V̄α =V−α .

3.5.3. Roots. Let G be a connected compact Lie group and fix a maximal torus T ⊂ G.

DEFINITION 122. The rank of G is the integer rkG = dimT . The semisimple rank of G is the
rank of G/Z(G), in other words the integer dimT −dimZ(G).

DEFINITION 123. The real roots of G (with respect to T ) are the non-zero weights of the
adjoint action of T on g. Write Φ = Φ(G : T ) for the set of roots.

The weight space g0 corresponding to the weight 0 (that is, the space of T -fixed vectors) is self-
conjugate, hence is the complexification of the space of T -fixed vectors in g. Since ZG(T ) = T we
see that this is exactly tC so we have

gC = tC⊕
⊕
α∈Φ

gα .

REMARK 124. We will now show that the structure of g can be computed from this decompo-
sition.

Let H ∈ liet, Xα ∈ gα . We then have

Ad(exp(tH)) ·Xα = e2πiα(H)Xα .

Differentiating with respect to t we conclude that

adH ·Xα = 2πiα(H)Xα .

In other words, gα is a joint eigenspace of {adH}H∈t where the eigenvalue of H is 2πiα(H).
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DEFINITION 125. Given a real root α , the map H 7→ 2πiα(H) will be called the associated
complex root. We denote both by α , but it should be clear from context which is intended. Note
that the real root is an element of t∗R while the latter is a purely imaginary element of t∗C. Generaly
the real roots are useful when studying representation theory and the “root system”. The complex
roots are useful when studying structure theory, that is in computing commutators in g. Recall that
we also have an associated exponential root χα : T → S1 such that Adt ·Xα = χα(t)Xα whenever
t ∈ T , Xα ∈ gα .

LEMMA 126. For α,β ∈ Λ∗,
[
gα ,gβ

]
⊂ gα+β .

PROOF. Let H ∈ liet, Xα ∈ gα , Xβ ∈ gβ . Then by the Jacobi identity (writing α for the complex
root) [

H,
[
Xα ,Xβ

]]
=−

[
Xα ,
[
Xβ ,H

]]
−
[
Xβ , [H,Xα ]

]
=− [Xα ,−β (H)Xα ]−

[
Xβ ,α(H)Xα

]
= (β (H)+α(H))

[
Xα ,Xβ

]
= ((α +β )(H))

[
Xα ,Xβ

]
.

�

We are now ready to begin studying structure theory in earnest The following argument is taken
from [Brocker–tom Dieck, Prop xxxx]

THEOREM 127. If rkG = 1 then G is either SO(3) or SU(2).

PROOF. We begin with two preliminary observations

(1) Given β ∈Φ let Xβ ∈ gβ . Then X−β = X̄β ∈ g−β and we may consider Hβ =
[
Xβ ,X−β

]
. If

Hβ were zero Span
{

Xβ ,X−β

}
⊂ gC would be a two-dimensional commutative subalgebra

of gC. Since this subspace is stable by complex conjugation it would be the complexifi-
cation of a two-dimensional commutative subalgebra of lieg, and such subalgebras don’t
exist when rkG = 1. It follows that Hβ 6= 0 in such circumstances. We also note that
H̄β =

[
X̄β , X̄−β

]
=
[
X−β ,Xβ

]
=−Hβ . It follows that Hβ ∈ itR, and that iHβ ∈ t.

(2) Fix a non-zero H ∈ t. Sine t is one-dimensional, every real root α is determined by the
non-zero real number α(H), and we order the roots by these numbers.

Now let β be the smallest positive root, choose Xβ and X−β as above and let

V = CX−β ⊕ tC⊕
⊕
α>0

gα .

We then have:

(1) V is adXβ
-invariant, since adXβ

·X−β ⊂ g0, and for α ≥ 0 adXβ
·gα ⊂ gα+β and α +β ≥ 0.

(2) V is adX−β
-invariant, since adX−β

·X−β = 0, adX−β
·tC ⊂CX−β and for any α > 0 we have

α ≥ β so adX−β
·gα ⊂ gα−β with α−β ≥ 0.

Now let Hβ =
[
Xβ ,X−β

]
as above. Since the adjoint representation is a Lie algebra representation

(Corollary 94), adHβ
=
[
adXβ

,adX−β

]
so V is also stable by adHα

. since adHα
is a commutator it
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follows that TrC
(

adHβ

∣∣V) = 0. On the other hand, we can compute this trace via the eigenspace
decomposition:

TrC
(

adHβ

∣∣V)= 2πiβ (Hβ )+0+ ∑
α>0

dimC gα ·2πiα(Hβ ) .

Rearranging the terms we conclude that(
dimC gβ −1

)
β
(
iHβ

)
+ ∑

α>β

dimC gα ·α(iHβ ) = 0 .

Now iHβ ∈ t is a non-zero multiple of H. In particular either all the numbers β (iHβ ),α(iHβ )

are all positive or they are all negative. Also, the coefficients
(
dimC gβ −1

)
,dimC gα are all non-

negative. It follows that dimC gβ = dimC g−β = 1 and that dimC gα = 0 if α > β , in other words
that gC = g−β ⊕ tC⊕gβ is three dimensional. �

3.5.4. The algebraic Weyl group. Continuing with our general group G and maximal torus
T , let α ∈Φ and let uα = ker(α), a codimension-1 subspace of t, Gα = ZG (uα).

LEMMA 128. uα is the Lie algebra of the kernel of the exponential root χα . In particular,
exp(uα) is a closed subgroup of T of codimension 1.

REMARK 129. That kernel need not be connected (for example, the kernel of the root of SU(2)
consists of the disconnected centre). We will later see that this kernel has at most two connected
components.

PROPOSITION 130. Gα is a connected subgroup of semisimple rank 1. Moreover:
(1) dimC gα = dimC g−α = 1 and ±α are the only roots proportional to α .
(2) W (Gα : T )'C2.
(3) Let sα ∈W (Gα : T )⊂W (G : T ) be the non-trivial element. Then sα ∈ GL(t) is a reflec-

tion in the hyperplane uα .

PROOF. Gα centralizes the Lie algebra of a torus, so by Lemma 110 it is connected. Since
T ⊃ exp(uα) is commutative, we see that T ⊂ Gα so that T is a maximal torus there as well.
By construction, uα ⊂ ZLieGα

so the semisimple rank is at most 1. It is not zero then Gα is
non-commutative: its lie algebra contains both t and ℜ(gα ⊕g−α), and these subspace do not
commute.

Set Ḡα = Gα/Ker χα , and let T̄ = T/Ker(χα), a maximal torus there. This is a group of rank
1, hence isomorphic to one of SU(2),SO(3).

(1) Let β be a root proportional to α . Then ±β (H) = 0 for any H ∈ uα and it follows
that ℜ

(
gβ ⊕g−β

)
⊂ LieGα and hence that gβ ⊂ LieCGα . The direct sum over all these

subspaces is disjoint from uα so they all inject into LieCGα/uαC. Being the complexified
Lie algebra of Ḡα it is three-dimensional and it follows that dimC gα = dimC g−α = 1 and
that there are no other roots proportional to α .

(2) If g ∈Gα normalizes T then its image in Ḡα normalizes its maximal torus T̄ . Conversely,
if the image of g normalizes T̄ then for any t ∈ T we have gtg−1 ∈ T Ker(χα) = T so
g normalizes T . It follows that the quotient map induces an isomorphism of the Weyl
groups W (Gα ;T )'W

(
Ḡα : T̄

)
'C2.
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(3) Since uα is central in LieGα it is fixed by any element of Gα . The non-trivial element of
W
(
Ḡα : T̄

)
acts by inversion on T̄ , so sα acts by inversion on t/uα , that is by reflection

in uα on t.

�

REMARK 131. We call a root reduced if it is not a multiple of another root, and we see that
here every root is reduced.

Since NGα
(T )⊂ NG(T ) we can think of sα ∈ NGα

(T )/T as an element of W = NG(T )/T . This
element is a reflection on t fixing uα . Having equipped g with an inner product, the Weyl group
acts by isometries on t so sα must be the orthogonal reflection in uα . We note that W also acts on
the dual space t∗ fixing the dual lattice Λ∗ and the roots Φ and that sα(α) =−α .

DEFINITION 132. Call sα the root reflection associated to the root α . The subgroup of the
Weyl group generated by the root reflections will be called the algebraic Weyl group.

COROLLARY 133. Let z=Z(g) be the Lie algebra of the centre of G and let V = {ν ∈ t∗ | ν(z) = 0}=
(t/z)∗. Then(V,Φ) is a root system, in that it has the following properties:

(1) Φ⊂V is a finite set not containing {0}.
(2) SpanRΦ =V .
(3) For every α ∈ Φ, the reflection sα in the hyperplane perpendicular to α preserves Φ

setwise.

EXAMPLE 134. Let G = SU(3). Let T = {diag(e(iθ1),e(iθ2),e(iθ3)) | θ1 +θ2 +θ3 = 0}.
This is a torus (isomorphic to (S1)2). To see that it is maximal and compute its Weyl group,
restrict the standard representation of SU(3) on C3 to T . The coordinate axes are exactly the irre-
ducible subrepresentations and they are non-isomorphic (each is one copy of a different character).
It follows that every w ∈ NG(T ) must permute these subspaces and every t ∈ ZG(T ) must act on
each subspace separately. But these subspaces are irreducible, so each t ∈ ZG(T ) must be diagonal,
and hence an element of t. It follows that T = ZG(T ) so it is a maximal torus, that NG(T ) is the
group of signed permutations, and that W (G : T ) = NG(T )/T ' S3.

Differentiaing the definition G=
{

g ∈ SL3(C) | g†g = Id
}

we see that g=
{

X ∈3 C | X† +X= 0
}

that is the set of anti-Hermitian matrices of trace zero. Since every Y ∈3 C can be uniquely written
in the form

Y =
Y +Y †

2
+

Y −Y †

2
=

Y −Y †

2
+ i

Y +Y †

2i
∈ g⊕ ig

we see that gC '3 C. It is also clear that t= {idiag(θ1,θ2,θ3) | θ1 +θ2 +θ3 = 0}.
Now for i 6= j let E i j ∈3 C⊂M3(C) be the matrix with zeroes everywhere except that

(
E i j)

i j =

1. Then for H = idiag(θ1,θ2,θ3) we have adH ·E i j = i(θi−θ j)E i j so the roots of G are the maps
ei j(H) = θi−θ j.

To find the Weyl chamber we note that the Frobenius, or Hilbert–Schmidt norm on M3(C) is
U(3)-invariant. In terms of this norm (and removing the factor of i) an orthonormal basis of t is
given by 1√

6
diag(1,1,−2) , 1√

2
diag(1,−1,0). Now for

H =
x√
6

diag(1,1,−2)+
y√
2

diag(1,−1,0)
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we have

e12(H) =
√

2y

e23(H) =

√
3√
2

x− 1√
2

y

e13(H) =

√
3√
2

x+
1√
2

y .

In the coordinates
(

x
y

)
we therefore have:

u12 =

(
0
1

)⊥
, u23 =

(√
3/2
−1/2

)⊥
, u13 =

(√
3/2

+1/2

)⊥
.

These three lines are the lines at slopes π

3 and 2π

3 throug the origin, dividing R2 into six identical
sectors. We call these sectors Weyl chambers, the lines walls, and note that S3 (which has order 6)
acts on the six chambers simply transitively.

EXERCISE 135. Do the same for SU(n), SO(2n), SO(2n+1), Sp(n).

3.5.5. Weyl chambers. The complement of hyperplane uα consists of two half-spaces: the
sets {H ∈ t | α(H)> 0} and {H ∈ t | α(H)< 0}. It follows that the connected components of

t\
⋃

α∈Φ

uα

are interections of half-spaces, hence convex cones.

DEFINITION 136. These connected components are called the (open) Weyl chambers in t. We
call uα a wall of the chamber C if dim

(
uα ∩C̄

)
= rkG− 1. More generally, a (codimension-k-)

facet of the Weyl chamber C is any non-empty set of the form F =
(
uα1 ∩·· ·uαk ∩C̄

)◦ where the
interior is taken as a subset of the vector space uα1 ∩ ·· ·uαk . We note that the closure C̄ is the
disjoint union of the facets of C (where C itself is the unique facet of codimension zero).

REMARK 137. Note that we are studying the Weyl chambers in liet, rather than the Weyl
chambers in t∗ where the root system lies.

Given a chamber C, let ∆ be the set of roots α such that uα is a wall of C and such that α is
positive on C (note that uα = u−α and that exactly one of α,−α is positive on C).

FACT 138. The chamber is exactly the set bounded by the walls: C = {H ∈ t | ∀α ∈ ∆ : α(H)> 0}.

OBSERVATION 139.
(1) The Weyl group acts on G by automorphisms while fixing T . It therefore permutes the

roots, hence their kernels, and hence the Weyl chambers.
(2) It is clear that there is a bijection between Weyl chambers and (satisfiable) notions of

positivity (choices of sign for all the α(H)). The facets are determined by having some
roots positive, some negative, and some vanishing.

LEMMA 140. The group W ′ =
〈
{sα}α∈∆

〉
acts transitively on the set of Weyl chambers.
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PROOF. Fix x ∈ C; let C′ be any other chamber and let y ∈ C′. Note that (being equivalence
classes for an equivalence relation) if two chambers intersect they are equal, to it suffices to show
that wy ∈C for some w ∈W ′. For this choose w such that ‖wy− x‖ is minimal. If wy /∈C then by
Fact 138 above, there is a wall uα such that x,wy are on opposite sides of α . Decomposing x,wy
into their components along and perpendicular to uα it is then clear that

‖sα(wy)− x‖< ‖wy− x‖ ,
which is a contradiction since sαw ∈W ′. �

LEMMA 141. The group W acts simply transitively on the chambers.

PROOF. We already know the action is transitive. Suppose w ∈ NG(T ) stabilizes the chamber
C. Since W is finite, w has finite order as an automorphism of T so averaging over a w-orbit shows
that w fixes some x ∈C (recall that C is convex). Think of x as an element H ∈ liet, we have that
Adw ·H = H, that is w ∈ ZG(H).

On the other hand, since H ∈C, α(H) 6= 0 for all α ∈ Φ. It follows that H acts non-trivially
in every root space so ZgC(H) = tC and hence Zg(H) = liet. Now ZG(H) is connected (this is true
for all H ∈ lieg); its lie Algebra being Zg(H) we conclude that ZG(H) = T and hence that w ∈ T .
It follows that the image of w in W = NG(T )/T is trivial. �

COROLLARY 142. W ′ =W, that is the algebraic and analytic Weyl groups coincide.

PROOF. Let w ∈W . By the transitivity of W ′ there is w′ ∈W ′ such that w ·C = w′ ·C. By the
simplicity of the action we conclude w = w′ ∈W ′. �

3.5.6. Geometry of the roots. The linear map sα − Idt is non-zero but vanishes on uα . It
therefore has rank 1, and factors through α . We conclude that there is a unique α̌ ∈ t such that

sα(x) = x−α(x)α̌ .

The dual action on t∗ is then
sα(ν) = ν−ν(α̌)α

and since sα(α) =−α we have α(α̌) = 2.

DEFINITION 143. Call α̌ the coroot associated to α and write Φ̌ for the set of coroots.

REMARK 144. If α +β is a root it need not be the case that ˇα +β = α̌ + β̌ . In particular, a
root system and its dual need not be isomorphic.

EXERCISE 145.
(
t/z,Φ̌

)
is a root system, the dual root system.

LEMMA 146. Coroots are integral, that is α̌ ∈ Λ = Ker(exp �t).

PROOF. The element 1
2 α̌ has exp

(
2πiα(1

2 α̌)
)
= exp(2πi) = 1 since α(α̌) = 2. In other words,

exp
(1

2 α̌
)

lies in the kernel the exponential root χα and hence is Ad(sα)-stable. On the other hand,
sα(α̌) =−α̌ so Ad(sα)exp

(1
2 α̌
)
= exp

(
−1

2 α̌
)
. It follows that

exp
(

1
2

α̌

)
= exp

(
−1

2
α̌

)
,

that is exp(α̌) = 1 and α̌ ∈ Λ. �

COROLLARY 147. For any α,β ∈Φ we have nαβ = β (α̌) ∈ Z.
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DEFINITION 148. The nαβ are called the Cartan numbers of g. Note that sα(β ) = β −nαβ α .

DEFINITION 149. The coroot lattice is the subgroup Γ < Λ generated by the coroots.

FACT 150. Λ/Γ' π1(G).

COROLLARY 151. G̃ is compact iff π1(G) is finite iff Φ̌ spans t iff z = 0 iff Z(G) is finite. In
each of those equivalent cases we say that G is semisimple.

FACT 152. G is semisimple iff its lie algebra is the direct sum of nonabelian simple lie algebras,
iff G is the almost direct product of nonabelian quasisimple groups.

Recall that we have equipped g with an invariant inner product. This also endows t∗ with an
inner product and then

sα(ν) = ν−2
〈ν ,α〉
〈α,α〉

α

so if we identify liet, t∗ using this inner product the element α̌ is identified with α̌∗ = 2α

〈α,α〉 ∈ t∗.

Now nαβ = β (α̌) = 〈β , α̌∗〉= 2 〈β ,α〉〈α,α〉 . It follows that

nαβ nβα = 4
〈α,β 〉2

〈α,α〉〈β ,β 〉
≤ 4

by Cauchy–Schwartz, with equality iff α,β are proportional. Since the two Cartan numbers are
integers, each is zero iff α ⊥ β , and if both are non-zero their product is positive, we see that (up
to exchanging α,β ) if α,β are not proportional, the pair

(
nαβ ,nβα

)
must be one of the seven

possibilities:
(0,0) ,±(1,1) ,±(1,2) ,±(1,3) .

In each case the pair
(
nαβ ,nβα

)
determines the angle between the roots and (if they are not or-

thogonal) the ratio of their lengths.

COROLLARY 153. Let α,β be non-proportional and suppose that that nαβ > 0 (equivalently
that 〈α,β 〉> 0). Then α−β ∈Φ.

PROOF. If nαβ > 0 then either nβα = 1, at which point sβ (α) = α −β ∈ Φ, or nαβ = 1, at
which point sβ (α) = β −α ∈Φ and then α−β ∈Φ as well. �

3.5.7. Simple roots. Fix a Weyl chamber C, giving a notion of positivity: call α ∈Φ positive
if it is positive on C, negative otherwise, and write Φ+,Φ− for the sets of positive and negative
roots. Since roots have constant sign on C it suffices to evaluate them at a fixed H ∈C.

DEFINITION 154. Call α ∈ Φ+ simple if it is not a sum of positive roots, and let ∆ be the set
of simple roots.

REMARK 155. This clearly depends on the choice of C. More on that anon.

LEMMA 156. Every positive root is a positive sum of simple roots.

PROOF. Let α be a counterexample with α(H) minimal. Then α is not a simple root, so
α = β +γ with β ,γ ∈Φ+. But then β (H)+γ(H) = α(H) shows that β (H),γ(H)< α(H) so they
are sums of positive roots and we have a contradiction. �

PROPOSITION 157. ∆⊂ t∗ is linearly independent.
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PROOF. Let α,β ∈ ∆ be distinct. If the angle between them was acute (〈α,β 〉 > 0) then by
Corollary 153 one of α − β ,β −α would be a positive root and this would make either α or β

decomposable. It follows that 〈α,β 〉 ≤ 0 for each pair. they are also all contained in the half-plane
{ν | ν(H)> 0}. We show these two hypotheses suffice to make a set of vectors independent.
Indeed, suppose we have a linear dependence in ∆. We then have disjoint non-empty A,B⊂ ∆ and
positive coefficients {aα}α∈A ,

{
bβ

}
β∈B such that

∑
α∈A

aα ·α = ∑
β∈B

bβ ·β .

Call this vector ν . Then
0≤ 〈ν ,ν〉= ∑

α,β

aαbβ 〈α,β 〉 ≤ 0

and it follows that ν = 0. We therefore have

0 = ν(H) = ∑
α∈A

aα ·α(H)> 0 ,

a contradiction. �

LEMMA 158. ∆ spans (g/z)∗.

PROOF. Every simple root vanishes on z, so the same holds for every element of the span.
Conversely, the span contains Φ; it follows the common kernel of the span is exactly z so the span
is exactly (g/z)∗. �

COROLLARY 159. #∆ is the semisimple rank.

LEMMA 160. {uα}α∈∆
are the walls of C.

PROOF. {H | ∀α ∈ ∆ : α(H)> 0} = {H | ∀α ∈Φ+ : α(H)> 0} = C. Since ∆ are indepen-
dent they are all walls. �

DEFINITION 161. A system of simple roots (or simple system) is a subset ∆⊂Φ such that every
root is either the sum of elements of ∆ or the negative of such a sum.

COROLLARY 162. Every system of simple roots is the set of walls of a Weyl chamber, we have
a bijection between systems of simple roots, notions of positivity, and Weyl chambers, and the Weyl
group acts transitively on simple systems. In particular, every root belongs to a simple system.
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CHAPTER 4

Semisimple Lie groups
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CHAPTER 5

Representation theory of real groups
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APPENDIX A

Functional Analysis

In this appendix we review the basics of topological vector spaces. References include TVS.

A.1. Topological vector spaces

Let K be a non-discrete complete valued field

DEFINITION 163. A topological vector space is a vector space V over K equipped with a
topology so that (V,+) is a topological group and such that scalar multiplication is a continuous
map · : K×V →V .

PROPOSITION 164. A finite-dimensional K-vector space has a unique topology making it into
a TVS. In particular, if V,W are TVS with V finite-dimensional then HomK(V,W ) = Homcts(V,W )
and if V ⊂W then V is closed and complete. If K is locally compact then a TVS over K is locally
compact iff it is finite-dimensional.

DEFINITION 165. Fix a TVS V . Call C ⊂V :
(1) Balanced, if αv ∈C for all x ∈C, |α| ≤ 1
(2) Absorbing, if ∪t>0tC =V (that is, for all v ∈V there are u ∈C and t > 0 such that tu = v.
(3) Bounded, if for every open neighbourhood W 3 0 there is t > 0 such that C ⊂ tW .
(4) Totally bounded, if for every open neighbourhood W 3 0 there is a finite set {ui}

n
i=1 ⊂V

such that C ⊂ ∪i (vi +W ).

LEMMA 166. Every finite subset of a TVS is bounded.

LEMMA 167. Every TVS has a basis neighbourhoods of 0 which are balanced.

DEFINITION 168. A net {xα}α∈D ⊂V is called a Cauchy net if for every neighbourhood W of
0 there is δ ∈ D such that if α,β ≥ δ then xα − xβ ∈W . X ⊂V is complete if every Cauchy net in
X converges to a limit in X . V is quasi-complete if every closed bounded subset of X is complete.

LEMMA 169. In a quasi-complete TVS every totally bounded subset is relatively compact.

ASSUMPTION 170. K = R or C.

DEFINITION 171. Fix a TVS V . Call C⊂V convex, if tu+(1−t)v∈C for all u,v∈C, t ∈ [0,1].
Call V locally convex if any neighbourhood of 0 contains a convex neighbourhood of zero.

PROPOSITION 172. A TVS is locally convex iff its topology is determined by a family of semi-
norms.

LEMMA 173. Let V be locally convex, C ⊂ V be totally bounded. Then the convex hull and
balanced convex hull of C are also totally bounded.

COROLLARY 174. Let V be locally convex and quasi-complete and let C ⊂ V be compact.
Then the closed convex hull of C is compact.
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DEFINITION 175. The continuous dual of V is V ′ def
= Homcts (V,K).

THEOREM 176 (Hahn–Banach). Let V be locally convex, U ⊂ E a subspace, f ∈U ′ . Then f
has a continuous linear extension to V . In particular, V ′ separates the points of V .

A.2. Quasicomplete locally convex TVS

[based on Casseleman, Garrett]

PROPOSITION 177. An inverse limit of quasi-complete spaces is quasi-complete. The direct
product of a family of quasi-complete space is quasi-complete. The weak-* dual of a Banach space
is quasi-complete.

Let V be a locally convex TVS.

DEFINITION 178. Let Ω be a measureable space.
(1) Call f : Ω→V weakly measurable if ϕ ◦ f : Ω→ K is measurable for each ϕ ∈V ′. Let
(2) Let µ be a measurae on Ω and let f : Ω→ V be weakly measurable. Call v ∈ V the

Gelfand–Pettis integral of f (and write v=
∫

f dµ) if for every ϕ ∈V ′ ϕ ◦ f is µ-integrable
and we have

ϕ (v) =
∫

Ω

ϕ ◦ f dµ .

REMARK 179. Note that the integral clearly exists as an element of V ′′; the question is about
existence as an element of V . Since V ′ separates the points, it is also clear that the integral (if it
exists) is unique.

THEOREM 180. Let V be quasi-complete, let Ω be compact, µ a Radon measure, and let
f : Ω→V be continuous. Then

∫
f dµ exists.

PROOF. Wlog µ is a probability measure. In that case we also show
∫

f dµ lies in the closed
convex hull of f (Ω).

LEMMA 181. If V is finite-dimensional then
∫

f dµ exists and lies in the convex hull of f (Ω).

Write C for the closed convex hull of f (Ω). For every finite F ⊂ V ′ consider the continuous
linear map F : V → KF given by v 7→ (ϕ(v))

ϕ∈F . It maps C continuously onto the convex hull
of the image of F ◦ f . Now

∫
Ω
(F ◦ f )dµ exists in that convex hull, and we obtain a non-empty

closed convex subset

CF =

{
v ∈C | F(v) =

∫
Ω

(F ◦ f )dµ

}
.

Since
⋂r

i=1CFi = C⋃
iFi we see that this family has the finite intersection property, and it follows

that ⋂
F

CF

is non-empty. The (necessarily unique) point there is the desired integral. �

A.3. Integration

A.4. Spectral theory and compact operators

A.5. Trace-class operators and the simple trace formula
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