Lior Silberman's Math 412: Problem set 9, due 16/11/2017

P1. Recall that a *projection* is a linear map E such that $E^2 = E$. For each n construct a projection $E_n: \mathbb{R}^2 \to \mathbb{R}^2$ of norm at least $n (\mathbb{R}^n)$ is equipped with the Euclidean norm unless specified otherwise). Prove for yourself that the norm of an *orthogonal* projection is 1.

Difference and Differential Equations

- P2. Let $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Let $\underline{v}_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
 - (a) Find S invertible and D diagonal such that $A = S^{-1}DS$.
 - Prove for yourself the formula $A^k = S^{-1}D^kS$.

 - (b) Find a formula for $\underline{v}_k = A^k \underline{v}_0$, and show that $\frac{\underline{v}_k}{\|\underline{v}_k\|}$ converges for any norm on \mathbb{R}^2 . RMK You have found a formula for Fibbonacci numbers (why?), and have shown that the real number $\frac{1}{2}\left(\frac{1+\sqrt{5}}{2}\right)^n$ is exponentially close to being an integer. RMK This idea can solve any *difference equation* (see PS10). We now apply this to solving
 - differential equations.
- 1. We will analyze the differential equation u'' = -u with initial data $u(0) = u_0$, $u'(0) = u_1$.

(a) Let $\underline{v}(t) = \begin{pmatrix} u(t) \\ u'(t) \end{pmatrix}$. Show that *u* is a solution to the equation iff \underline{v} solves

$$\underline{\nu}'(t) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \underline{\nu}(t) \,.$$

- (b) Let $W = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Find formulas for W^n and express $\exp(Wt) = \sum_{k=0}^{\infty} \frac{W^k t^k}{k!}$ as a matrix whose entries are standard power series.
- (c) Sum the series and show that $u(t) = u_0 \cos(t) + u_1 \sin(t)$.
- (d) Find a matrix S such that $W = S \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} S^{-1}$. Evaluate $\exp(Wt)$ again, this time using $\exp(Wt) = S\left(\exp\begin{pmatrix}it & 0\\ 0 & -it\end{pmatrix}\right)S^{-1}.$
- 2. Consider the differential equation $\frac{d}{dt} \underline{v} = B\underline{v}$ where *B* is at in PS7 problem 1.
 - (a) Find matrices S, D so that D is in Jordan form, and such that $B = SDS^{-1}$.
 - (b) Find $\exp(tD)$ as in 1(b) by computing a formula for D^n and summing the series.
 - (c) Find the solution such that $v(0) = \begin{pmatrix} 0 & 1 & 1 & 0 \end{pmatrix}^{t}$.
- 3. Let $A = \begin{pmatrix} z & 1 \\ 0 & z \end{pmatrix}$ with $z \in \mathbb{C}$.

 - (a) Find (and prove) a simple formula for the entries of Aⁿ.
 (b) Use your formula to decide the set of z for which ∑_{n=0}[∞] Aⁿ converge, and give a formula for the sum.
 - (c) Show that the sum is $(Id A)^{-1}$ when the series converges.

Extra credit

4. For any matrix A show that $\sum_{n=0}^{\infty} z^n A^n$ converges for $|z| < \frac{1}{\rho(A)}$.

Supplementary problems

- A. Consider the map Tr: $M_n(F) \rightarrow F$.
 - (a) Show that this is a continuous map.
 - (b) Find the norm of this map when $M_n(F)$ is equipped with the $L^1 \to L^1$ operator norm (see PS8 Problem 2(a)).
 - (c) Find the norm of this map when $M_n(F)$ is equipped with the Hilbert–Schmidt norm (see PS8 Problem 4).
 - (*d) Find the norm of this map when $M_n(F)$ is equipped with the $L^p \to L^p$ operator norm. Find the matrices A with operator norm 1 and trace maximal in absolute value.
- B. Call $T \in \text{End}_F(V)$ bounded below if there is K > 0 such that $||T\underline{v}|| \ge K ||\underline{v}||$ for all $\underline{v} \in V$. (a) Let *T* be bounded below. Show that *T* is invertible, and that T^{-1} is a bounded operator. (*b) Suppose that *V* is finite-dimensional. Show that every invertible map is bounded below.
- C. (The supremum norm and the Weierestrass *M*-test) Let *V* be a complete normed space. DEF For a set *X* call $f: X \to V$ bounded if there is M > 0 such that $||f(x)||_V \le M$ for all $x \in X$ in which case we write $||f||_{\infty} = \sup_{x \in X} ||f(x)||_V$ (equivalently, *f* is bounded if $x \mapsto ||f(x)||_V$ is in $\ell^{\infty}(X)$).
 - (a) Show that $\ell^{\infty}(X; V)$ is a vector space (this doesn't use completeness of V).
 - (b) Show that $\ell^{\infty}(X;V)$ is complete.
 - DEF Now suppose that X is a topological space (if you aren't sure about this, simply assume $X \subset \mathbb{R}^n$). Let C(X;V) denote the space of *continuous* functions $X \to V$ and let $C_b(X;V) = C(X;V) \cap \ell^{\infty}(X;V)$ be the space of *bounded* continuous functions, the latter equipped with the ℓ^{∞} -norm.
 - (c) Show that $C_b(X;V)$ is complete (equivalently, that it is a closed subspace of $\ell^{\infty}(X;V)$.
 - COR Deduce Weirestrass's *M*-test: $f_n: X \to V$ are continuous and $||f_n||_{\infty} \leq M_n$ with $\sum_n M_n < \infty$ then $\sum_n f_n$ converges to a continuous function bounded by $\sum_n M_n$.