Lior Silberman's Math 412: Problem Set 3 (due 28/9/2017)

Practice

P1 Let $\underline{u}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \underline{u}_{2}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right), \underline{u}_{3}=\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right), \underline{u}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ as vectors in \mathbb{R}^{3}.
(a) Construct an explicit linear functional $\varphi \in\left(\mathbb{R}^{3}\right)^{\prime}$ vanishing on $\underline{u}_{1}, \underline{u}_{2}$.
(b) Show that $\left\{\underline{u}_{1}, \underline{u}_{2}, \underline{u}_{3}\right\}$ is a basis on \mathbb{R}^{3} and find its dual basis.
(c) Evaluate the dual basis at \underline{u}.

P2 Let V be n-dimensional and let $\left\{\varphi_{i}\right\}_{i=1}^{m} \in V^{\prime}$.
(a) Show that if $m<n$ there is a non-zero $\underline{v} \in V$ such that $\varphi_{i}(\underline{v})=0$ for all i. Interpret this as a statement about linear equations.
(b) When is it true that for each $\underline{x} \in F^{m}$ there is $\underline{v} \in V$ such that for all $i, \varphi_{i}(\underline{v})=x_{i}$?

P3 Let U, V be finite-dimensional vector spaces and let $L \in \operatorname{Hom}_{F}(U, V)$. Consider the pairing $V^{\prime} \times U \rightarrow F$ given by $\langle\varphi, \underline{u}\rangle_{L}=\varphi(L \underline{u})$. Let $\left\{\underline{u}_{j}\right\} \subset U,\left\{\underline{v}_{i}\right\} \subset V$ be bases and let $\left\{\varphi_{i}\right\} \subset V^{\prime}$ be the basis dual to $\left\{\underline{v}_{i}\right\}$. Show that the matrix of L as a linear map $U \rightarrow V$ is the same as the Gram matrix of the pairing $\langle\cdot, \cdot\rangle_{L}$.

Example of linear functionals: Banach limits

Recall that $\ell^{\infty} \subset \mathbb{R}^{\mathbb{N}}$ denote the set of bounded sequences (the sequences \underline{a} such that for some M we have $\left|a_{i}\right| \leq M$ for all i). Let $S: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ be the shift map $(S \underline{a})_{n}=\underline{a}_{n+1}$. A subspace $U \subset \mathbb{R}^{\mathbb{N}}$ is shift-invariant if $S(U) \subset U$. If U is shift-invariant a function F with domain U is called shiftinvariant if $F \circ S=F$ (example: the subset $c \subset \mathbb{R}^{\mathbb{N}}$ of convergent sequences is a shift-invariant subspace, as is the functional lim: $c \rightarrow \mathbb{R}$ assigning to every sequence its limit).

Note that P4 is a practice problem!
P4 (Useful facts)
(a) Show that ℓ^{∞} is a subspace of $\mathbb{R}^{\mathbb{N}}$.
(b) Show that $S: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ is linear and that $S\left(\ell^{\infty}\right)=\ell^{\infty}$.
(c) Let $U \subset \mathbb{R}^{\mathbb{N}}$ be a shift-invariant subspace. Show that the set $U_{0}=\{S \underline{a}-\underline{a} \mid \underline{a} \in U\}$ is a subspace of U.
(d) In the case $U=\mathbb{R}^{\oplus \mathbb{N}}$ of sequences of finite support, show that $U_{0}=U$.
(e) Let Z be an auxiliary vector space. Show that $F \in \operatorname{Hom}(U, Z)$ is shift-invariant iff F vanishes on U_{0}.

1. Let $W=\left\{S \underline{a}-\underline{a} \mid \underline{a} \in \ell^{\infty}\right\} \subset \ell^{\infty}$. Let $\mathbb{1}$ be the sequences everywhere equal to 1 .
(a) Show that the sum $W+\mathbb{R} \mathbb{1} \subset \ell^{\infty}$ is direct and construct an S-invariant functional $\varphi: \ell^{\infty} \rightarrow$ \mathbb{R} such that $\varphi(\mathbb{1})=1$ (Hint: PS2 problem 5(b)).
(b) (Strengthening) For $\underline{a} \in \ell^{\infty}$ set $\|\underline{a}\|_{\infty}=\sup _{n}\left|a_{n}\right|$. Show that if $\underline{a} \in W$ and $x \in \mathbb{R}$ then $\|\underline{a}+x \mathbb{1}\|_{\infty} \geq|x|$. (Hint: consider the average of the first N entries of the vector $\underline{a}+x \mathbb{1}$).
SUPP Let $\varphi \in\left(\ell^{\infty}\right)^{\prime}$ be shift-invariant, positive (if $a_{i} \geq 0$ for all i then $\varphi(\underline{a}) \geq 0$), and satisfy $\varphi(\mathbb{1})=1$. Show that $\liminf _{n \rightarrow \infty} a_{n} \leq \varphi(\underline{a}) \leq \limsup \sin _{n \rightarrow \infty} a_{n}$ and conclude that the restriction of φ to c is the usual limit.
2. ("choose one") Let $\varphi \in\left(\ell^{\infty}\right)^{\prime}$ satisfy $\varphi(\mathbb{1})=1$. Let \underline{a} be the sequence $a_{n}=\frac{1+(-1)^{n}}{2}$.
(a) Suppose that φ is shift-invariant. Show that $\varphi(\underline{a})=\frac{1}{2}$.
(b) Suppose that φ respects pointwise multiplication (if $z_{n}=x_{n} y_{n}$ then $\varphi(\underline{z})=\varphi(\underline{x}) \varphi(\underline{y})$). Show that $\varphi(\underline{a}) \in\{0,1\}$.

Duality and bilinear forms

3. (The dual map) Let U, V, W be vector spaces, and let $T \in \operatorname{Hom}(U, V)$, and let $S \in \operatorname{Hom}(V, W)$.
(a) (The abstract meaning of transpose) Suppose U, V be finite-dimensional with bases $\left\{\underline{u}_{j}\right\}_{j=1}^{m} \subset$ $U,\left\{\underline{v}_{i}\right\}_{i=1}^{n} \subset V$, and let $A \in M_{n, m}(F)$ be the matrix of T in those bases. Show that the matrix of the dual map $T^{\prime} \in \operatorname{Hom}\left(V^{\prime}, U^{\prime}\right)$ with respect to the dual bases $\left\{\underline{u}_{j}^{\prime}\right\}_{j=1}^{m} \subset U^{\prime}$, $\left\{\underline{\underline{\prime}}_{i}^{\prime}\right\}_{i=1}^{n} \subset V^{\prime}$ is the transpose ${ }^{\mathrm{t}} A$.
(b) Show that $(S T)^{\prime}=T^{\prime} S^{\prime}$. It follows that ${ }^{\mathrm{t}}(A B)={ }^{\mathrm{t}} B^{\mathrm{t}} A$.
4. Let $F^{\oplus \mathbb{N}}$ denote the space of sequences of finite support. Construct a non-degenerate pairing $F^{\oplus \mathbb{N}} \times F^{\mathbb{N}} \rightarrow F$, giving a concrete realization of $\left(F^{\oplus \mathbb{N}}\right)^{\prime}$.
5. Let $C_{\mathrm{c}}^{\infty}(\mathbb{R})$ be the space of compactly supported smooth functions on \mathbb{R} (that is, functions which have derivatives of all orders and which are identically zero outside some interval), and let $D: C_{\mathrm{c}}^{\infty}(\mathbb{R}) \rightarrow C_{\mathrm{c}}^{\infty}(\mathbb{R})$ be the differentiation operator $\frac{\mathrm{d}}{\mathrm{d} x}$. For a reasonable function f on \mathbb{R} define a functional φ_{f} on $C_{\mathrm{c}}^{\infty}(\mathbb{R})$ by $\varphi_{f}(g)=\int_{\mathbb{R}} f g \mathrm{~d} x$ (note that f need only be integrable, not continuous).
(a) Show that if f is continuously differentiable then $D^{\prime} \varphi_{f}=\varphi_{-D f}$. (Hint: this expresses a basic fact from calculus)
DEF For this reason one usually extends the operator D to the dual space by $D \varphi \stackrel{\text { def }}{=}-D^{\prime} \varphi$, thus giving a notion of a "derivative" for non-differentiable and even discontinuous functions.
(b) Let the "Dirac delta" $\delta \in C_{\mathrm{c}}^{\infty}(\mathbb{R})^{\prime}$ be the evaluation functional $\boldsymbol{\delta}(f)=f(0)$. Express $(D \boldsymbol{\delta})(f)$ in terms of f.
(c) Let φ be a linear functional such that $D^{\prime} \varphi=0$. Show that for some constant $c, \varphi=\varphi_{c \mathbb{1}}$.

Supplement: The support of distributions

A. (This is a mostly a problem in analysis) Let $\varphi \in C_{\mathrm{c}}^{\infty}(\mathbb{R})^{\prime}$.

DEF Let $U \subset \mathbb{R}$ be open. Say that φ is supported away from U if for any $f \in C_{\mathrm{c}}^{\infty}(U), \varphi(f)=0$.
The support $\operatorname{supp}(\varphi)$ is the complement the union of all such U.
(a) Show that $\operatorname{supp}(\varphi)$ is closed, and that φ is supported away from $\mathbb{R} \backslash \operatorname{supp}(\varphi)$.
(b) Show that $\operatorname{supp}(\delta)=\{0\}$ (see problem 5(b)).
(c) Show that $\operatorname{supp}(D \varphi) \subset \operatorname{supp}(\varphi)$ (note that this is well-known for functions).
(d) Show that $D \delta$ is not of the form φ_{f} for any function f.

