Lior Silberman's Math 412: Problem Set 2 (due 21/9/2017)

 PracticeP1 Let $\left\{V_{i}\right\}_{i \in I}$ be a family of vector spaces, and let $A_{i} \in \operatorname{End}\left(V_{i}\right)=\operatorname{Hom}\left(V_{i}, V_{i}\right)$.
(a) Show that there is a unique element $\bigoplus_{i \in I} A_{i} \in \operatorname{End}\left(\bigoplus_{i \in I} V_{i}\right)$ whose restriction to the image of V_{i} in the sum is A_{i}.
(b) Carefully show that the matrix of $\bigoplus_{i \in I} A_{i}$ in an appropriate basis is block-diagonal.

P2 Construct a vector space W and three subspaces U, V_{1}, V_{2} such that $W=U \oplus V_{1}=U \oplus V_{2}$ (internal direct sums) but $V_{1} \neq V_{2}$.

Direct sums

1. Give an example of $V_{1}, V_{2}, V_{3} \subset W$ where $V_{i} \cap V_{j}=\{\underline{0}\}$ for every $i \neq j$ yet the sum $V_{1}+V_{2}+V_{3}$ is not direct.
2. (Diagonability)
(a) Let $T \in \operatorname{End}(V)$. For each $\lambda \in F$ let $V_{\lambda}=\operatorname{Ker}(T-\lambda)$ be the corresponding eigenspace. Let $\operatorname{Spec}_{F}(T)=\left\{\lambda \in F \mid V_{\lambda} \neq\{0\}\right\}$ be the set of eigenvalues of T. Show that the sum $\sum_{\lambda \in \operatorname{Spec}_{F}(T)} V_{\lambda}$ is direct (the sum equals V iff T is diagonable).
(b) Show that a square matrix $A \in M_{n}(F)$ is diagonable over F iff there exist n one-dimensional subspaces $V_{i} \subset F^{n}$ such $F^{n}=\bigoplus_{i=1}^{n} V_{i}$ and $A\left(V_{i}\right) \subset V_{i}$ for all i.

3*. Let $\left\{V_{i}\right\}_{i=1}^{r}$ be subspaces of W with $\sum_{i=1}^{r} \operatorname{dim}\left(V_{i}\right)>(r-1) \operatorname{dim} W$. Show that $\bigcap_{i=1}^{r} V_{i} \neq\{\underline{0}\}$.

Quotients

4. Write $M_{n}(F)$ for the space of $n \times n$ matrices with entries in F. Let $\mathfrak{s l}_{n}(F)=\left\{A \in M_{n}(F) \mid \operatorname{Tr} A=0\right\}$ and let $\mathfrak{p g l}_{n}(F)=M_{n}(F) / F \cdot I_{n}$ (matrices modulu scalar matrices). Suppose that n is invertible in F (equivalently, that the characteristic of F does not divide n). Show that the quotient map $M_{n}(F) \rightarrow \mathfrak{p g l}_{n}(F)$ restricts to an isomorphism $\mathfrak{s l}_{n}(F) \rightarrow \mathfrak{p g l}_{n}(F)$.
5. (a) Let $U \subset W$ be vector spaces. Show that there exists another subspace V such that $W=$ $U \oplus V$.
(b) Let $W=U \oplus V$, and let π : $W \rightarrow W / U$ be the quotient map. Show that the restriction of π to V is an isomorphism. Conclude that if $W=U \oplus V_{1}=U \oplus V_{2}$ for subspaces U, V_{1}, V_{2} of W then $V_{1} \simeq V_{2}$ (c.f. problem P2)
6. (Structure of quotients) Let $V \subset W$ with quotient map $\pi: W \rightarrow W / V$.
(a) Show that mapping $U \mapsto \pi(U)$ gives a bijection between (1) the set of subspaces of W containing V and (2) the set of subspaces of W / V.
(b) (The universal property) Let Z be another vector space. Show that $f \mapsto f \circ \pi$ gives a linear bijection $\operatorname{Hom}(W / V, Z) \rightarrow\{g \in \operatorname{Hom}(W, Z) \mid V \subset \operatorname{Ker} g\}$.

Extra credit

7. For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the Lipschitz constant of f is the (possibly infinite) number

$$
\|f\|_{\text {Lip }} \stackrel{\text { def }}{=} \sup \left\{\left.\frac{|f(x)-f(y)|}{|x-y|} \right\rvert\, x, y \in \mathbb{R}^{n}, x \neq y\right\} .
$$

Let $\operatorname{Lip}\left(\mathbb{R}^{n}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \mid\|f\|_{\text {Lip }}<\infty\right\}$ be the space of Lipschitz functions.
PRA Show that $f \in \operatorname{Lip}\left(\mathbb{R}^{n}\right)$ iff there is C such that $|f(x)-f(y)| \leq C|x-y|$ for all $x, y \in \mathbb{R}^{n}$.
(a) Show that $\operatorname{Lip}\left(\mathbb{R}^{n}\right)$ is a vector space.
(b) Let $\mathbb{1}$ be the constant function 1 . Show that $\|f\|_{\text {Lip }}$ descends to a function on $\operatorname{Lip}\left(\mathbb{R}^{n}\right) / \mathbb{R} \mathbb{1}$.
(c) For $\bar{f} \in \operatorname{Lip}\left(\mathbb{R}^{n}\right) / \mathbb{R} \mathbb{1}$ show that $\|\bar{f}\|_{\text {Lip }}=0$ iff $\bar{f}=0$.

Supplement: Infinite direct sums and products

CONSTRUCTION. Let $\left\{V_{i}\right\}_{i \in I}$ be a (possibly infinite) family of vector spaces.
(1) The direct product $\prod_{i \in I} V_{i}$ is the vector space whose underlying space is $\left\{f: I \rightarrow \bigcup_{i \in I} V_{i} \mid \forall i: f(i) \in V_{i}\right\}$ with the operations of pointwise addition and scalar multiplication.
(2) The direct sum $\bigoplus_{i \in i} V_{i}$ is the subspace $\left\{f \in \prod_{i \in I} V_{i} \mid \#\left\{i \mid f(i) \neq \underline{0}_{V_{i}}\right\}<\infty\right\}$ of finitely supported functions.
A. (Tedium)
(a) Show that the direct product is a vector space
(b) Show that the direct sum is a subspace.
(c) Let $\pi_{i}: \prod_{i \in I} V_{i} \rightarrow V_{i}$ be the projection on the i th coordinate $\left(\pi_{i}(f)=f(i)\right)$.

Show that π_{i} are surjective linear maps.
(d) Let $\sigma_{i}: V_{i} \rightarrow \prod_{i \in I} V_{i}$ be the map such that $\sigma_{i}(\underline{v})(j)=\left\{\begin{array}{ll}\underline{v} & j=i \\ \underline{0} & j \neq i\end{array}\right.$. Show that σ_{i} are injective linear maps.
B. (Meat) Let Z be another vector space.
(a) Show that $\bigoplus_{i \in I} V_{i}$ is the internal direct sum of the images $\sigma_{i}\left(V_{i}\right)$.
(b) Suppose for each $i \in I$ we are given $f_{i} \in \operatorname{Hom}\left(V_{i}, Z\right)$. Show that there is a unique $f \in$ $\operatorname{Hom}\left(\oplus_{i \in I} V_{i}\right)$ such that $f \circ \sigma_{i}=f_{i}$.
(c) You are instead given $g_{i} \in \operatorname{Hom}\left(Z, V_{i}\right)$. Show that there is a unique $g \in \operatorname{Hom}\left(Z, \prod_{i} V_{i}\right)$ such that $\pi_{i} \circ g=g_{i}$ for all i.
C. (What a universal property can do) Let S be a vector space equipped with maps $\sigma_{i}^{\prime}: V_{i} \rightarrow S$, and suppose the property of $5(\mathrm{~b})$ holds (for every choice of $f_{i} \in \operatorname{Hom}\left(V_{i}, Z\right)$ there is a unique $f \in \operatorname{Hom}(S, Z)$...)
(a) Show that each σ_{i}^{\prime} is injective (hint: take $Z=V_{j}$, f_{j} the identity map, $f_{i}=0$ if $i \neq j$).
(b) Show that the images of the σ_{i}^{\prime} span S.
(c) Show that S is the internal direct sum of the S_{i}.
(d) (There is only one direct sum) Show that there is a unique isomorphism $\varphi: S \rightarrow \bigoplus_{i \in I} V_{i}$ such that $\varphi \circ \sigma_{i}^{\prime}=\sigma_{i}$ (hint: construct φ by assumption, and a reverse map using the existence part of $5(\mathrm{~b})$; to see that the composition is the identity use the uniqueness of the assumption and of $5(\mathrm{~b})$, depending on the order of composition).
D. Now let P be a vector space equipped with maps $\pi_{i}^{\prime}: P \rightarrow V_{i}$ such that 5(c) holds.
(a) Show that π_{i}^{\prime} are surjective.
(b) Show that there is a unique isomorphism $\psi:: P \rightarrow \prod_{i \in I} V_{i}$ such that $\pi_{i} \circ \psi=\pi_{i}^{\prime}$.

Supplement: universal properties

E. A free abelian group is a pair (F, S) where F is an abelian group, $S \subset F$, and ("universal property") for any abelian group A and any (set) map $f: S \rightarrow A$ there is a unique group homomorphism $\bar{f}: G \rightarrow A$ such that $\bar{f}(s)=f(s)$ for any $s \in S$. The size $\# S$ is called the rank of the free abelian group.
(a) Show that $(\mathbb{Z},\{1\})$ is a free abelian group.
(b) Show that $\left(\mathbb{Z}^{d},\left\{\underline{e}_{k}\right\}_{k=1}^{d}\right)$ is a free abelian group.
(c) Let $(F, S),\left(F^{\prime}, S^{\prime}\right)$ be free abelian groups and let $f: S \rightarrow S^{\prime}$ be a bijection. Show that f extends to a unique isomorphism $\bar{f}: F \rightarrow F^{\prime}$.
(d) Let (F, S) be a free abelian group. Show that S generates F.
(e) Show that every element of a free abelian group has infinite order.

Supplement: Lipschitz functions

Definition. Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces, and let $f: X \rightarrow Y$ be a function. We say f is a Lipschitz function (or is "Lipschitz continuous") if for some C and for all $x, x^{\prime} \in X$ we have

$$
d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq C d_{X}\left(x, x^{\prime}\right)
$$

Write $\operatorname{Lip}(X, Y)$ for the space of Lipschitz continuous functions, and for $f \in \operatorname{Lip}(X, Y)$ write $\|f\|_{\text {Lip }}=\sup \left\{\left.\frac{d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)}{d_{X}\left(x, x^{\prime}\right)} \right\rvert\, x \neq x^{\prime} \in X\right\}$ for its Lipschitz constant.
F. (Analysis)
(a) Show that Lipschitz functions are continuous.
(b) Let $f \in C^{1}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$. Show that $\|f\|_{\text {Lip }}=\sup \left\{|\nabla f(x)|: x \in \mathbb{R}^{n}\right\}$.
(c) Generalize 7 (a),(b),(c) to the case of $\operatorname{Lip}(X, \mathbb{R})$ where X is any metric space.
(d) Show that $\operatorname{Lip}(X, \mathbb{R}) / \mathbb{R} \mathbb{1}$ is complete for all metric spaces X.

