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Introduction

Lior Silberman, lior@Math.UBC.CA, http://www.math.ubc.ca/~lior/
Office: Math Building 229B
Phone: 604-827-3031

For administrative details see the syllabus.

0.1. Goals and course plan (Lecture 1)

Math Metamath Skills
Reinforce basics

• Vector space, subspace
• Linear independence, basis
• Linear map
• Eigenvalue, eigenvector

Abstraction Hard problems
Multiple ideas

New ideas
• Direct sum, product
• Hom(U,V ) and duality
• Quotients
• Tensor products

Constructions
Universal properties

Abstract examples

Structure theory for linear maps
• Matrix decompositions
• LU , LL† and Computation
• Minimal poly, Cayley–Hamilton
• Jordan caProgramnonical form

Canonical forms
Algorithms

Analysis
• Norms
• Holomorphic calculus (etX )

Combining fields
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0.2. Review

0.2.1. Basic definitions. We want to give ourselves the freedom to have scalars other than real
or complex.

DEFINITION 1 (Fields). A field is a quintuple (F,0,1,+, ·) such that (F,0,+) and (F \{0} ,1, ·)
are abelian groups, and the distributive law ∀x,y,z ∈ F : x(y+ z) = xy+ xz holds.

EXAMPLE 2. R, C, Q. F2 (via addition and multiplication tables; ex: show this is a field), Fp.

EXERCISE 3. Every finite field has pr elements for some prime p and some integer r≥ 1. Fact:
there is one such field for every prime power.

DEFINITION 4. A vector space over a field F is a quadruple (V,0,+, ·) where (V,0,+) is an
abelian group, and · : F×V →V is a map such that:

(1) 1Fv = v.
(2) α (βv) = (αβ )v.
(3) (α +β )(v+w) = αv+βv+αw+βw.

LEMMA 5. 0F · v = 0 for all v.

PROOF. 0v = (0+0)v = 0v+0v. Now subtract 0v from both sides. �

0.2.2. Bases and dimension. Fix a vector space V .

DEFINITION 6. Let S⊂V .
• v∈V depends on S if there are {vi}

r
i=1⊂ S and {ai}r

i=1⊂ F such that v=∑
r
i=1 aivi [empty

sum is 0]
• Write SpanF(S)⊂V for the set of vectors that depend on S.
• Call S linearly dependent if some v ∈ S depends on S \ {v}, equivalently if there are

distinct {vi}
r
i=1 ⊂ S and {ai}r

i=1 ⊂ F not all zero such that ∑
r
i=1 aivi = 0.

• Call S linearly independent if it is not linearly dependent.

AXIOM 7 (Axiom of choice). Every vector space has a basis.

0.2.3. Examples. {0}, Rn, FX .
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0.3. Euler’s Theorem

Let G = (V,E) be a connected planar graph. A face of G is a finite connected component of
R2 \G.

THEOREM 8 (Euler). v− e+ f = 1.

PROOF. Arbitrarily orient the edges. Let ∂E : RE → RV be defined by f ((u,v)) = 1v− 1u,
∂F : RF → RE be given by the sum of edges around the face.

LEMMA 9. ∂F is injective.

PROOF. Faces containing boundary edges are independent. Remove them and repeat. �

LEMMA 10. Ker∂E = Im∂F .

PROOF. Suppose a combo of edges is in the kernel. Following a sequence with non-zero
coefficients gives a closed loop, which can be expressed as a sum of faces. Now subtract a multiple
to reduce the number of edges with non-zero coefficients. �

LEMMA 11. Im(∂E) is the the set of functions with total weight zero.

PROOF. Clearly the image is contained there. Conversely, given f of total weight zero move
the weight to a single vertex using elements of the image. [remark: quotient vector spaces] �

Now dimRE = dimKer∂E +dimIm∂E = dimIm∂F +dimIm∂E so

e = f +(v−1) .

�

REMARK 12. Using F2 coefficients is even simpler.
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CHAPTER 1

Constructions

Fix a field F .

1.1. Direct sum, direct product (Lectures 2-4)

1.1.1. Simplest case (Lecture 2).
CONSTRUCTION 13 (External direct sum). Let U,V be vector spaces. Their direct sum, de-

noted U⊕V , is the vector space whose underlying set is U×V , with coordinate-wise addition and
scalar multiplication.

LEMMA 14. This really is a vector space.

REMARK 15. The Lemma serves to review the definition of vector space.

PROOF. Every property follows from the respective properties of U,V . �

REMARK 16. Direct products of groups are discussed in 322.

LEMMA 17. dimF (U⊕V ) = dimF U +dimF V .

REMARK 18. This Lemma serves to review the notion of basis.

PROOF. Let BU ,BV be bases of U,V respectively. Then {(u,0V )}u∈BU
t {(0U ,v)}v∈BV

is a
basis of U⊕V . �

EXAMPLE 19. Rn⊕Rm ' Rn+m.

1.1.2. Internal sum and direct sum (Lecture 3). A key situation is when U,V are subspaces
of an “ambient” vector space W .

LEMMA 20. Let W be a vector space, U,V ⊂W. Then SpanF (U ∪V ) = {u+ v | u ∈U,v ∈V}.
PROOF. RHS contained in the span by definition. It is a subspace (non-empty, closed under

addition and scalar multiplication) which contains U,V hence contains the span. �

DEFINITION 21. The space in the previous lemma is called the sum of U,V and denoted U +V .

LEMMA 22. Let U,V ⊂W. There is a unique homomorphism U ⊕V →U +V which is the
identity on U,V .

PROOF. Define f ((u,v)) = u+ v. Check that this is a linear map. �

PROPOSITION 23 (Dimension of sums). dimF (U +V ) = dimF U +dimF V −dimF (U ∩V ).

PROOF. Consider the map f of Lemma 22. It is surjective by Lemma 20. Moreover Ker f =
{(u,v) ∈U⊕V | u+ v = 0W}, that is

Ker f = {(w,−w) | w ∈U ∩V} 'U ∩V .

Since dimF Ker f +dimF Im f = dim(U⊕V ) the claim now follows from Lemma 17. �
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REMARK 24. This was a review of that formula. Alternative proof by starting from a basis of
U ∩V and extending to bases of U,V , which is basically revisiting the proof of the formula.

DEFINITION 25 (Internal direct sum). We say the sum is direct if f is an isomorphism.

THEOREM 26. For subspaces U,V ⊂W TFAE
(1) The sum U +V is direct and equals W;
(2) U +V =W and U ∩V = {0}
(3) Every vector w ∈W can be uniquely written in the form w = u+ vv.

PROOF. (1)⇒ (2): U +V =W by assumption, U ∩V = Ker f .
(2)⇒ (3): the first assumption gives existence, the second uniqueness.
(3)⇒ (1): existence says f is surjective, uniqueness says f is injective. �

1.1.3. Finite direct sums (Lecture 4). Three possible notions: (U⊕V )⊕W , U ⊕ (V ⊕W ),
vector space structure on U ×V ×W . These are all the same. Not just isomorphic (that is, not
just same dimension), but also isomorphic when considering the extra structure of the copies of
U,V,W . How do we express this?

DEFINITION 27. W is the internal direct sum of its subspaces {Vi}i∈I if it spanned by them
and each vector has a unique representation as a sum of elements of Vi (either as a finite sum of
non-zero vectors or as a zero-extended sum).

REMARK 28. This generalizes the notion of “linear independence” from vectors to subspaces.

LEMMA 29. Each of the three candidates contains an embedded copy of U,V,W and is the
internal direct sum of the three images.

PROOF. Easy. �

PROPOSITION 30. Let A,B each be the internal direct sum of embedded copies of U,V,W.
Then there is a unique isomorphism A→ B respecting this structure.

PROOF. Construct. �

REMARK 31. (1) Proof only used result of Lemma, not specific structure; but (2) proof im-
plicitly relies on isomorphism to U×V ×W ; (3) We used the fact that a map can be defined using
values on copies of U,V,W (4) Exactly same proof as the facts that a function on 3d space can be
defined on bases, and that that all 3d spaces are isomorphic.

• Dimension by induction.

DEFINITION 32. Abstract arbitrary direct sum.

• Block diagonality.
• Block upper-triangularity. [first structural result].

1.2. Quotients (Lecture 5)

Recall that for a group G and a normal subgroup N, we can endow the quotient G/N with group
structure (gN)(hN) = (gh)N.

• This is well-defined, gives group.
• Have quotient map q : G→ G/N given by g 7→ gN.
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• Homomorphism theorem: any f : G→ H factors as G→ G/Ker( f ) follows by isomor-
phism.
• If N <M <G with both N,M normal then q(M)'M/N is normal in G/N and (G/N)/(M/N)'
(G/M).

Now do the same for vector spaces.

LEMMA 33. Let V be a vector space, W a subspace. Let π : V → V/W be the quotient as
abelian groups. Then there is a unique vector space structure on V/W making π a surjective
linear map.

PROOF. We must set α (v+W ) = αv+W . This is well-defined and gives the isomorphism.
Use quotient map to verify vector space axioms. �

EXAMPLE 34. V = C1(0,1), space of continuously differentiable functions. Then d
dx : V →

C(0,1) vanishes on R1 and hence induces a map d
dx :

(
C1(0,1)/R1

)
→ C(0,1). Note that the

inverse of this map is what we call “indefinite integral” – whose images is exactly an equivalence
class “function+c”.

EXAMPLE 35. The definite integral is a linear function which vanishes on functions which
are non-zero at countably many points. More generally, integration works on functions modulu
functions which are zero a.e.

FACT 36. The properties above persist for vector spaces.

• How to use quotients: “kill off” part of the vector spaces that is irrelevant (linear maps
vanish there) or already understood.

1.3. Hom spaces and duality (Lectures 6-8)

1.3.1. Hom spaces (Lecture 5 continued or start of lecture 6).

DEFINITION 37. HomF(U,V ) will denote the space of F-linear maps U →V .

LEMMA 38. HomF(U,V )⊂VU is a subspace, hence a vector space.

DEFINITION 39. V ′ = HomF(V,F) is called the dual space.

Motivation 1: in PDE. Want solutions in some function space V . Use that V ′ is much bigger to
find solutions in V ′, then show they are represented by functions.

1.3.2. The dual space, finite dimensions.

NOTE 40. In lecture ignore infinite dimensions (but make statements which are correct in
general).

CONSTRUCTION 41 (Dual basis). Let B = {bi}i∈I ⊂ V be a basis. Write v ∈ V uniquely as
v = ∑i∈I aibi (almost all ai = 0) and set ϕi(v) = ai.

LEMMA 42. These are linear functionals.

PROOF. Represent αv+ v′ in the basis. �

EXAMPLE 43. V = Fn with standard basis, get ϕi(x) = xi. Note every functional has the form
ϕ(x) = ∑

n
i=1 ϕ(ei)ϕi(x).

9



REMARK 44. Alternative construction: ϕi is the unique linear map to F satisfying ϕi(b j)= δi, j.

LEMMA 45. The dual basis is linearly independent. It is spanning iff dimF V < ∞.

PROOF. Evaluate a linear combination at b j.
If V is finite-dimensional, enumerate the basis as {bi}

n
i=1. Then for any ϕ ∈V ′ and any v ∈V

write v = ∑i aibi and then

ϕ(v) = ∑
i

aiϕ(bi) = ∑
i
(ϕ(bi))ϕi(v)

so
ϕ = ∑

i
(ϕ(bi))ϕi ∈ SpanF {ϕi} .

In the infinite-dimensional case let φ = ∑i∈I ϕi. Then φ is a well-defined linear functional
which depends on every coordinate hence not in the span of the {ϕi}. �

REMARK 46. This isomorphism V → V ′ is not canonical: the functional ϕi depends on the
whole basis B and not only on bi, and the dual basis transforms differently from the original basis
under change-of-basis.

The argument above used evaluation – let’s investigate that more.

PROPOSITION 47 (Double dual). Given v∈V consider the evaluation map ev : V ′→F given by
ev(ϕ)=ϕ(v). Then v 7→ ev is a linear injection V ↪→V ′′, an isomorphism iff V is finite-dimensional.

PROOF. The vector space structure on V ′ (and on FV in general) is such that ev is linear. That
the map v 7→ ev is linear follows from the linearity of the elements of V ′. For injectivity let v ∈ V
be non-zero. Extending v to a basis, let ϕv be the element of the dual such that ϕv(v) = 1. Then
ev(ϕv) 6= 0 so ev 6= 0. If dimF V = n then dimF V ′ = n and thus dimF V ′′ = n and we have an
isomorphism. �

The map V ↪→V ′′ is natural: the image ev of v is intrinsic and does not depend on a choice of
basis.

1.3.3. The dual space, infinite dimensions (Lecture 7).

LEMMA 48 (Interaction with past constructions). We have
(1) (V/U)′ ↪→V ′ as {ϕ ∈V | ϕ(U) = {0}}.
(2) (U⊕V )′ 'U ′⊕V ′.

PROOF. Universal property. �

COROLLARY 49. Since (F)′ ' F, it follows by induction that (Fn)′ ' Fn.

What about infinite sums?
• The universal property gives a bijection (

⊕
i∈I Vi)

′←→
Ś

i∈I V ′i , more generally

HomF

(⊕
i∈I

Vi,Z

)
1:1←→

ą

i∈I

Homi (Vi,Z) .

– LHS has a vector space structure – should get one on the right.
– Which leads us to observe that:
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• Any Cartesian product
Ś

i∈I Wi has a natural vector space structure, coming from point-
wise addition and scalar multiplication.

– Note that the underlying set is
ą

i∈I

Wi = { f | f is a function with domain I and ∀i ∈ I : f (i) ∈Wi}

=

{
f : I→

⋃
i∈I

Wi | f (i) ∈Wi

}
.

∗ RMK: AC means Cartesian products nonempty, but our sets have a distin-
guished element so this is not an issue.

– Define α (wi)i∈I +(w′i)i∈I
def
= (αwi +w′i)i∈I . This gives a vector space structure.

– Denote the resulting vector space ∏i∈I Wi and called it the direct product of the Wi.
• The bijection (

⊕
i∈I Vi)

′←→∏i∈I V ′i is now a linear isomorphism [in fact, the vector space
structure on the right is the one transported by the isomorphism].

We now investigate ∏iWi in general.
• Note that it contains a copy of each Wi (map w ∈Wi to the sequence which has w in the

ith position, and 0 at every other position).
• And these copies are linearly independent: if a sum of such vectors from distinct Wi is

zero, then every coordinate was zero.
• Thus ∏iWi contains

⊕
i∈I Wi as an internal direct sum.

– This subspace is exactly the subset {w ∈∏iWi | supp(w) is finite}.
– And in fact, that subspace proves that

⊕
i∈I Wi exists.

– But ∏iWi contains many other vectors – it is much bigger.

EXAMPLE 50. R⊕N ⊂ RN – and the latter is the dual!

COROLLARY 51. The dual of an infinite-dimensional space is much bigger than the sum of the
duals, and the double dual is bigger yet.

1.3.4. Question: so we only have finite sums in linear algebra. What about infinite sums?
Answer: no infinite sums in algebra. Definition of ∑

∞
n=1 an =A from real analysis relies on analytic

properties of A (close to partial sums), not algebraic properties.
But, calculating sums can be understood in terms of linear functionals.

LEMMA 52 (Results from Calc II, reinterpreted). Let S ⊂ RN denote the set of sequences a
such that ∑

∞
n=1 an converges.

(1) R⊕N ⊂ S⊂ RN is a linear subspace.
(2) Σ : S→ R given by Σ(a) = ∑

∞
n=1 an is a linear functionals.

Philosophy: Calc I,II made element-by-element statements, but using linear algebra we can ex-
press them as statements on the whole space.

Now questions about summing are questions about intelligently extending the linear functional
Σ to a bigger subspace. BUT: if an extension is to satisfy every property of summing series, it is
actually the trivial (no) extension.

For more information let’s talk about limits of sequences instead (once we can generalize limits
just apply that to partial sums of a series).
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DEFINITION 53. Let c⊂ `∞ ⊂ RN be the sets of convergent, respectively bounded sequences.

LEMMA 54. c⊂ `∞ are subspaces, and limn→∞ : c→ R is a linear functional.

EXAMPLE 55. Let C : RN→ RNbe the Cesàro map (Ca)N = 1
N ∑

N
n=1 an. This is clearly linear.

Let CS =C−1(c) be the set of sequences which are Cesàro-convergent, and set L ∈CS′ by L(a) =
limn→∞(Ca). This is clearly linear (composition of linear maps). For example, the sequence
(0,1,0,1, · · ·) now has the limit 1

2 .

LEMMA 56. If a ∈ c then Ca ∈ c and they have the same limit. Thus L above is an extension of
limn→∞.

THEOREM 57. There are two functionals LIM, limω ∈ (`∞)′ (“Banach limit”, “limit along
ultrafilter”, respectively) such that:

(1) They are positive (map non-negative sequences to non-negative sequences);
(2) Agree with limn→∞ on c;
(3) And, in addition

(a) LIM◦S = LIM where S : `∞→ `∞is the shift.
(b) limω (anbn) = (limω an)(limω bn).

1.3.5. Pairings and bilinear forms (Lecture 8). Goal: identify the dual of a vector space in
concerete terms. For this we need an abstract notion of dual not tied to the particular realization
V ′ (similar to how we have an abstract notion of direct sum as “space generated by independent
copies of Vi” which is not tied to the concrete realization as the subspace of tuples of finite support
in ∏iVi).

OBSERVATION 58. The evaluation map V ×V ′→ F given by

〈v,ϕ〉= ϕ(v)

is bilinear (=linear in each variable).

Note that linearity in the first variable is equivalent to the linearity of ϕ , while linearity in the
second variable is equivalent to the definition of the vector space structure on V ′.

DEFINITION 59 (Pairings / bilinear maps). For any two vector spaces U,V a (bilinear) pairing
between U,V is a map

〈·, ·〉 : U×V → F
which is linear in each variable separately. Similarly we define a bilinear map U×V → Z.

EXAMPLE 60. The standard inner product on Fn: 〈u,v〉 = ∑i uivi. More generally, given B ∈
Mm×n(F) have a pairing on Fm×Fn given by

〈u,v〉= ∑
i

uiBi jv j .

More generally, given any bilinear pairing of U,V choose bases {ui}i∈I ⊂U ,
{

v j
}

j∈J
⊂V and

define the Gram matrix by
Bi j =

〈
ui,v j

〉
.

We can then compute the pairing of any two vectors: by the distributive law (“FOIL”)〈
∑

i
aiui,∑

i
b jv j

〉
= ∑

i, j
a jBi jb j .
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Conversely, any matrix B defines a bilinear pairing (aside: this is a linear bijection if you give
pairings the obvious vector space structure).

1.3.6. Pairings: duality and degeneracy. Fix a bilinear form〈·, ·〉 : U×V → F . Then for any
u ∈U we get a map ϕu : V → F by ϕu(v) = 〈u,v〉.

(1) ϕu is linear (∈V ′) iff the pairing is linear in the second variable.
(2) The map U →V ′ given by u→ ϕu is linear iff the pairing is linear in the first variable.

We conclude that every pairing gives a map U →V ′, and equivalently also a map V →U ′.

LEMMA 61. We have a linear bijection {pairings on U×V}←→ HomF(U,V ′)

PROOF. The inverse map associates to each f ∈ HomF(U,V ′) the bilinear form

〈u,v〉 f = ( f (u))(v) .

�

DEFINITION 62. Call the bilinear map non-degenerate if both maps U → V ′, V → U ′ are
embeddings.

LEMMA 63. A pairing is non-degenerate iff for every non-zero u ∈U there is v ∈V such that
〈u,v〉 6= 0 and conversely.

Key idea: if the map V →U ′ associated to a pairing is bijective, then we can use V as a model
for U ′ via the pairing.

EXAMPLE 64. The dot product is a non-degenerate pairing Fn×Fn hence identifies (Fn)′ with
Fn.

Two further examples from functional analysis:

First we fix a compact topological space X . Then for any finite Borel measure µ on X and any
continuous f ∈C(X) we have the integral ∫

f dµ .

This is a bilinear pairing C(X)×{finite signed measures on X} which is non-degenerate.

THEOREM 65 (Riesz representation theorem). Let X be compact. Then every continuous lin-
ear functional on C(X) is given by a finite measure (that is, the continuous dual C(X)′ can be
represented by the space of measures).

Second, the inner product on Hilbert space is a non-degenerate pairing!

THEOREM 66 (Riesz representation theorem). Let H be a Hilbert space. Then every continu-
ous linear functional onH is of the form 〈u, ·〉.

1.3.7. The dual of a linear map (Lecture 8, continued).

CONSTRUCTION 67. Let T ∈ Hom(U,V ). Set T ′ ∈ Hom(V ′,U ′) by (T ′ϕ)(v) = ϕ (T v).

LEMMA 68. This is a linear map Hom(U,V )→ Hom(V ′,U ′). An isomorphism if U,V finite-
dimensional.

LEMMA 69. (T S)′ = S′T ′

PROOF. PS3 �

13



1.4. Multilinear algebra and tensor products (Lectures 9-14)

1.4.1. Bilinear forms (Lecture 9).

DEFINITION 70. Let {Vi}i∈I be vector spaces, W another vector space. A function f : ×i∈I
Vi→W is said to be multilinear if it is linear in each variable.

EXAMPLE 71 (Bilinear maps). (1) f (x,y) = xy is bilinear F2→ F .
(2) The map (T,v) 7→ T v is a multilinear map Hom(V,W )×V →W .
(3) For a matrix A ∈Mn,m(F) have

(
x,y
)
7→ txAy on Fn×Fm.

(4) For ϕ ∈U ′, ψ ∈V ′ have (u,v) 7→ ϕ(u)ψ(v), and finite combinations of those.

REMARK 72. A bilinear function on U×V is not the same as a linear function on U⊕V . For
example: is f (au,av) equal to a f (u,v) or to a2 f (u,v)? That said,

⊕
Vi was universal for maps

from Vi. It would be nice to have a space which is universal for multilinear maps. We only discuss
the finite case.

EXAMPLE 73. A multilinear function B : U×{0}→ F has B(u,0) = B(u,0 ·0) = 0 ·B(u,0) =
0. A multilinear function B : U×F→ F has B(u,x) = B(u,x ·1) = xB(u,1) = xϕ(u) where ϕ(u) =
B(u,1) ∈U ′.

We can reduce everything to Example 71(3): Fix bases {ui} ,
{

v j
}

. Then

B

(
∑

i
xiui,∑

i
y jv j

)
= ∑

i, j
xiB(ui,v j)y j =

txBy

where Bi j = B(ui,v j). Note: xi = ϕi(u) where {ϕi} is the dual basis. Conclude that

(1.4.1) B = ∑
i, j

B
(
ui,v j

)
ϕiψ j .

Easy to check that this is an expansion in a basis (check against
(
ui,v j

)
). We have shown:

PROPOSITION 74. The set
{

ϕiψ j
}

i, j is a basis of the space of bilinear forms U×V → F.

COROLLARY 75. The space of bilinear forms on U×V has dimension dimF U ·dimF V .

REMARK 76. Also works in infinite dimensions, since can have the sum (1.4.1) be infinite –
every pair of vectors only has finite support in the respective bases.

1.4.2. The tensor product (Lecture 10-11). Now let’s fix U,V and try to construct a space
that will classify bilinear maps on U×V .

• Our space will be generated by terms u⊗ v on which we can evaluate f to get f (u,v).
• Since f is multilinear, f (au,bv) = ab f (u,v) so need (au)⊗ (bv) = ab(u⊗ v).
• Similarly, since f (u1 +u2,v) = f (u1,v)+ f (u2,v) want (u1 +u2)⊗(v1 + v2) = u1⊗v1+

u2⊗ v1 +u1⊗ v2 +u2⊗ v2.

CONSTRUCTION 77 (Tensor product). Let U,V be spaces. Let X = F⊕(U×V ) be the formal
span of all expressions of the form {u⊗ v}(u,v)∈U×V . Let Y ⊂ X be the subspace spanned by

{(au)⊗ (bv)−ab(u⊗ v) | a,b ∈ F, (u,v) ∈U×V}
and

{(u1 +u2)⊗ (v1 + v2)− (u1⊗ v1 +u2⊗ v1 +u1⊗ v2 +u2⊗ v2) | ∗∗} .
14



Then set U⊗V = X/Y and let ι : U×V →U⊗V be the map ι(u,v) = (u⊗ v)+Y .

THEOREM 78. ι is a bilinear map. For any space W any any bilinear map f : U ×V →W,
there is a unique linear map f̃ : U⊗V →W such that f = f̃ ◦ ι .

PROOF. Uniqueness is clear, since f̃ (u⊗v) = f (u,v) fixes f̃ on a generating set. For existence
we need to show that if ˜̃f : X→W is defined by ˜̃f (u⊗v) = f (u,v) then ˜̃f vanishes on Y and hence
descends to U⊗V . �

PROPOSITION 79. Let BU ,BV be bases for U,V respectively. Then {u⊗ v | u ∈ BU ,v ∈ BV} is
a basis for U⊗V .

PROOF. Spanning: use bilinearity of ι . Independence: for u∈BU let
{

ϕu
}

u∈BU
⊂U ′,

{
ψv
}

v∈BV
⊂

V ′be the dual bases. Then ϕuψvis a bilinear map U ×V → F , and the sets {u⊗ v}(u,v)∈BU×BV
and{

ϕ̃uψv
}
(u,v)∈BU×BV

are dual bases. �

COROLLARY 80. dimF(U⊗V ) = dimF U ·dimF V .

EXAMPLE 81. Examples of tensor products
(1) Rn⊗Rm encoded as matrices.
(2) Polynomial algebra: F [x]⊗F [y]' F [x,y]
(3) Functions on product spaces: let X ,Y be compact then C(X)⊗C(Y ) dense in C(X×Y ).

• Note Fubini’s Theorem can be obtained from this.
(4) Quantum mechanics: state space for two particles is the (completion of the) tensor product

of the state spaces for the individual particles.
• Note that many states are not “pure tensors”.

1.4.3. The Universal Property (Lecture 12). Abstract view of tensor products (note the in-
definite article!)

DEFINITION 82 (Abstract tensor product). A tensor product of the spaces U,V is a pair (W, ι)
where W is a vector space, ι : U ×V →W is bilinear, and for every bilinear map f : U ×V → Z
there is a unique f̄ ∈ HomF (W,Z) such that f = f̄ ◦ ι .

REMARK 83. Informally, ι is the “most general bilinear map on U×V .

EXAMPLE 84. We show that the image of ι spans W . Indeed if not there would be a non-zero
functional f̄ ∈W ′ vanishing on the span of that image, and then f̄ ◦ ι = 0 ◦ ι would both be the
zero bilinear form, violating uniqeness.

Before we explain how to use this property, we return to the example of direct sum.

DEFINITION 85 (Abstract direct sum). A direct sum of {Vi}i∈I is a space W and maps ei ∈
HomF (Vi,W ) such that for every system of maps fi ∈ HomF (Vi,Z) there is a unique f̄ : W → Z
such that fi = f̄ ◦ ei for each i.

PROPOSITION 86. Direct sums are unique up to a unique isomorphism.

PROOF. Suppose W ′ is another direct sum with system of inclusions {e′i}i∈I . Then W ′ is a
space with system of maps, so by hypothesis there is a unique f̄ ′ : W →W ′ such that e′i = f̄ ′ ◦ ei
(note that this is the key requirement from an isomorphism preserving the structure, so we see both
that such a map exists and that it is unique, but we don’t know it is an isomorphism yet).
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By symmetry there is also f̄ : W ′→W such that ei = f̄ ◦ e′i.
Next, note that f̄ ◦ f̄ ′ and idW are both maps W →W and they satisfy(

f̄ ◦ f̄ ′
)
◦ ei = f̄ ◦

(
f̄ ′ ◦ ei

)
= f̄ ◦ e′i choice of f̄ ′

= ei choice of f̄
= idW ◦ei

so by the universal property (applied to the system of maps ei with target W ), f̄ ◦ f̄ ′ = idW . By
symmetry we also have f̄ ′ ◦ f̄ = idW ′ and we are done. �

Consider now direct products. Reversing all the arrows (on the board, modify the definition in
red ink), we get:

DEFINITION 87 (Abstract direct product). A direct product of {Vi}i∈I is a space W and maps
πi ∈HomF (W,Vi) such that for every system of maps fi ∈HomF (Z,Vi) there is a unique f̄ : Z→W
such that fi = πi ◦ f̄ for each i.

PROPOSITION 88. Direct products are unique up to a unique isomorphism.

PROOF. Reverse all the arrows in the previous proof. �

PROPOSITION 89. Tensor products are unique up to a unique isomorphism.

PROOF. Let (W, ι), (W ′, ι ′) be two tensor products of U,V . Then since ι ′ : U ×V →W ′ is
bilinear there is a unique f̄ ′ : W →W ′ such that ι ′ = f̄ ′ ◦ ι .

REMARK. Note that this is a basic requirement for an “isomorphism of tensor products”: it
must identify the vector representing u⊗ v on both sides. Using the universal property we saw
both that we can actually identify these vectors and that this identification extends to a linear map
of the tensor product spaces.

Continuing with the proof, for the same reason there is f̄ : W ′→W such that ι = f̄ ◦ ι ′.

REMARK. One can now finish the proof by noting, for example, that f̄ ◦ f̄ ′ fixes elements of
the form u⊗ v and that these span the tensor product. But we prefer a proof which doesn’t “look
under the hood” and use the vectors in the vector space.

Finally, we have(
f̄ ◦ f̄ ′

)
◦ ι = f̄ ◦

(
f̄ ′ ◦ ι

)
= f̄ ◦ ι

′ choice of f̄ ′

= ι choice of f̄
= idW ◦ι .

We have shown that the bilinear map ι : U×V →W is represented by both homomorphisms f̄ ◦ f̄ ′

and idW so they must be equal, and by symmetry we conclude that f̄ ′ ◦ f̄ = idW ′ as well so that
f̄ , f̄ ′ are the desired isomorphisms. �
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REMARK 90. This point of view leads to “category theory” where one forgets about the specific
algebraic structure under consideration (here vector spaces) and considers only the statements
about objects and homomorphisms. This way theorems about “direct sums”, say, apply for any
construction of direct sum regardless of the underlying algebraic structures.

For example, we get direct sums (and direct products) of groups, rings, modules, vector spaces.
But we also get direct sums of topological spaces (this turns out to be the disjoint union) and direct
products of topological spaces (this is the Tychonoff product).

1.4.4. Symmetric and antisymmetric tensor products (Lecture 13). For motivation, think
of U⊗U as the state space of a pair of identical quantum particles. What happens when we swap
them? Represent swapping them by the obvious map T ∈ EndF (U⊗U).

FACT 91. Some fundamental particles (“Bosons”) always have states in the +1-eigenspace.
Other particles (“Fermions”) always have states in the −1-eigenspace. Note that a state like
u⊗ u is permitted to Bosons, but prohibited (!) to Fermions. This is called the “Fermi exclusion
principle”.

ASSUMPTION 92. For this section, char(F) = 0.

Let (12) ∈ S2 act on V ⊗V by exchanging the factors (why is this well-defined?).

LEMMA 93. Let T ∈EndF(U) satisfy T 2 = Id. Then U is the direct sum of the two eigenspaces.

DEFINITION 94. Sym2V and
∧2V are the eigenspaces.

PROPOSITION 95. Generating sets and bases.

In general, let Sk act on V⊗k.
• What do we mean by that? Well, this classifies n-linear maps V ×·· ·×V → Z. Universal

property gives isom of (U⊗V )⊗W , U⊗ (V ⊗W ).
• Why action well-defined? After all, the set of pure tensors is nonlinear. So see first as

multilinear map V n→V⊗n.
• Single out Symk V ,

∧k V . Note that there are other representations.
• Claim: bases

1.4.5. Bases of Symk,
∧k, determinants (Lecture 14).

EXAMPLE 96.
∧2R3 is three-dimensional, which explains the cross-product as giving anti-

symmetric 2-tensors rather than vectors.

PROPOSITION 97. Symmetric/antisymmetric tensors are generating sets; bases coming from
subsets of basis.

Tool: the maps P±k : V⊗k→V⊗k given by P±k (v1⊗·· ·⊗ vk)=
1
k! ∑σ∈Sk

(±)σ

(
vσ(1)⊗·· ·⊗ vσ(k)

)
.

LEMMA 98. These are well defined (extensions of linear maps). Fix elements of Symk V ,
∧k V

respectively, images are in those subspaces (check τ ◦P±k = (±)τP±k ). Conclude that image is
spanned by image of basis.

EXAMPLE 99. Exterior forms of top degree and determinants.
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CHAPTER 2

Structure Theory: The Jordan Canonical Form

2.1. Introduction (Lecture 15)

2.1.1. The two paradigmatic problems. Fix a vector space V of dimension n < ∞ (in this
chapter, all spaces are finite-dimensional unless stated otherwise), and a map T ∈ End(V ). We will
try for two kinds of structural results:

(1) [“decomposition”] T = RS where R,S ∈ End(V ) are “simple”
(2) [“canonical form”] There is a basis {vi}

n
i=1 ⊂V in which the matrix of T is “simple”.

EXAMPLE 100. (From 1st course)
(1) (Gaussian elimination) Every matrix A ∈Mn(F) can be written in the form A = E1 · · ·Ek ·

Arr where Ei are “elementary” (row operations or rescaling) and Arr is row-reduced.
(2) (Spectral theory) Suppose T is diagonable. Then there is a basis in which T is diagonal.

As an example of how to use (1), suppose det(A) is defined for matrices by column expansion.
Then can show (Lemma 1) that det(EX) = det(E)det(X) whenever E is elementary and that
(Lemma 2) det(AX) = det(A)det(X) whenever A is row-reduced. One can then prove

THEOREM 101. For all A,B, det(AB) = det(A)det(B).

PROOF. Let D = {A | ∀X : det(AX) = det(A)det(X)}. Then we know that all Arr ∈ D and that
if A∈D then for any elementary E, det((EA)X)= det(E(AX))= det(E)det(AX)= det(E)det(A)det(X)=
det(EA)det(X) so EA ∈ D as well. It now follows from Gauss’s Theorem that D is the set of all
matrices. �

2.1.2. Triangular matrices.

DEFINITION 102. A ∈Mn(F) is upper (lower) triangular if ...

Significance: these are very good for computation. For example:

LEMMA 103. The lower-triangular matrix L is invertible iff its diagonal entries are non-zero.

The proof is:

ALGORITHM 104 (Forward-substitution). Let L be lower-triangular with non-zero diagonal

entries. Then the solution to Lx = b is given by xi =
bi−∑

i−1
j=1 li jx j

lii
for i = 1,2, . . . ,n.

REMARK 105. Note that the algorithm does exactly as many multiplications as non-zero entries
in U . Hence better than Gaussian elimination for general matrix (O(n3)), really good for sparse
matrix, and doesn’t require storing the matrix entries only the way to calculate ui j (in particular no
need to find inverse).
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EXERCISE 106. (1) Express this as a formula for the inverse of a lower-triangular matrix (2)
Develop the backward-substitution algorithm for upper-triangular matrices and find a formula for
their inverses.

COROLLARY 107. If A = LU we can efficiently solve Ax = b.

Note that we don’t like to store inverses. For example, because they are generally dense matri-
ces even if L,U are sparse.

We now try to look for a vector-space interpretation of being triangular. For this note that if
U ∈Mn(F) is upper-triangular then

Ue1 = u11e1 ∈ Span{e1}
Ue2 = u12e1 +u22e2 ∈ Span{e1,e2}

... =
...

Uek ∈ Span{e1, . . . ,ek}
... =

... .

In particular, we found a family of subspaces Vi = Span{e1, . . . ,ei} such that U(Vi) ⊂ Vi, such
that{0}=V0 ⊂V1 ⊂ ·· · ⊂Vn = Fn and such that dimVi = i.

EXERCISE 108 (Cholesky decomposition). If A is positive-definite, then A = LLt for a lower-
triangular matrix L.

THEOREM 109. T ∈ End(V ) has an upper-triangular matrix wrt some basis iff there are T -
invariant subspaces {0}=V0 ⊂V1 ⊂ ·· · ⊂Vn = Fn with dimVi = i.

PROOF. We just saw necessity. For sufficiency, given Vi choose for 1 ≤ i ≤ n, vi ∈ Vi \Vi−1.
These exist (the dimension increases by 1), are a linearly independent set (each vector is inde-
pendent of its predecessors) and the first i span Vi (by dimension count). Finally for each i,
T vi ∈ T (Vi)⊂Vi = Span{v1, . . . ,vi} so the matrix of T in this basis is upper triangular. �

2.2. The minimal polynomial (Lecture 16)

Recall we have an n-dimensional F-vector space V .
• A key tool for studying linear maps is studying polynomials in the maps (we saw how to

analyze maps satisfying T 2 = Id, for example).
• We will construct a gadget (the “minimal polynomial”) attached to every linear map on

V . It is a polynomial, and will tell us a lot about the map.
• Computationally speaking, this polynomial cannot be found efficiently. It is a tool of

theorem-proving in abstract algebra.

DEFINITION 110. Given a polynomial f ∈ F [x], say f = ∑
d
i=0 aixi and a map T ∈ End(V ) set

(with T 0 = Id)

f (T ) =
d

∑
i=0

aiT i .

LEMMA 111. Let f ,g ∈ F [x]. Then ( f +g)(T ) = f (T )+g(T ) and ( f g)(T ) = f (T )g(T ). In
other words, the map f 7→ f (T ) is a linear map F [x]→ End(V ), also respecting multiplication (“a
map of F-algebras”, but this is beyond our scope).
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PROOF. Do it yourself. �

• Given a linear map our first instinct is to study the kernel and the image. [Aside: the
kernel is an ideal in the algebra].
• We’ll examine the kernel and leave the image for later.

LEMMA 112. There is a non-zero polynomial f ∈ F [x] such that f (T ) = 0. In fact, there is
such f with deg f ≤ n2.

PROOF. F [x] is infinite-dimensional while EndF(V ) is finite-dimensional. Specifically, dimF F [x]≤n2
=

n2 +1 while dimF EndF(V ) = n2. �

REMARK 113. We will later show (Theorem of Cayley–Hamilton) that the characteristic poly-
nomial PT (x) = det(x Id−T ) from basic linear algebra has this property.

• Warning: we are about to divide polynomials with remainder.

PROPOSITION 114. Let I = { f ∈ F(x) | f (T ) = 0}. Then I contains a unique non-zero monic
polynomial of least degree, say m(x), and I = {g(x)m(x) | g ∈ F [x]} is the set of multiples of m.

PROOF. Let m ∈ I be a non-zero member of least degree. Dividing by the leading coefficient
we may assume m monic. Now suppose m′ is another such. Then m−m′ ∈ I (this is a subspace)
is of strictly smaller degree. It must therefore be the zero polynomial, and m is unique. Clearly if
g∈F [x] then (gm)(T ) = g(T )m(T ) = 0. Conversely, given any f ∈ I we can divide with remainder
and write f = qm+ r for some q,r ∈ F [x] with degr < degm. Evaluating at T we find r(T ) = 0,
so r = 0 and f = qm. �

DEFINITION 115. Call m(x) = mT (x) the minimal polynomial of T .

REMARK 116. We will later prove directly that degmT (x)≤ n.

EXAMPLE 117. (Minimal polynomials)
(1) T = Id, m(x) = x−1.

(2) T =

(
1
)

, T 2 = 0 but T 6= 0 so mT (x) = x2.

(3) T =

(
1 1

1

)
, T 2 =

(
1 2

1

)
so
(
T 2− Id

)
= 2(T − Id) so T 2−2T + Id = 0 so mT (x)|(x−

1)2. But T − Id 6= 0 so mT (x) = (x−1)2.

(4) T =

(
1

1

)
, T 2 = Id so mT (x) = x2−1 = (x−1)(x+1).

• In the eigenbasis
{(

1
±1

)}
the matrix is

(
1
−1

)
– we saw this in a previous class.

(5) T =

(
−1

1

)
, T 2 =− Id so mT (x) = x2 +1.

(a) If F =Q or F = R this is irreducible. No better basis.

(b) If F =C (or Q(i)) then factor mT (x) = (x− i)(x+ i) and in the eigenbasis
{(

1
±i

)}
the matrix has the form

(
−i

i

)
.
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(6) V = F [x]<n (polynomials of degree less than n), T = d
dx . Then T n = 0 but T n−1 6= 0

(why?) so mT (x) = xn.
(7) [To be proved in problem set] Let D = diag(a1, . . . ,an) be diagonal, its entries being the

distinct numbers {b1, · · · ,br} (perhaps with repetition). Then its minimal polynomial is
∏

r
i=1 (x−br) [cf (1),(4),(5)]

We now connect the minimal polynomial with the spectrum.

LEMMA 118 (Spectral calculus). Suppose that T v = λv. Then f (T )v = f (λ )v.

PROOF. Work it out at home. �

REMARK 119. The same proof shows that if the subspace W is T -invariant (T (W )⊂W ) then
W is f (T )-invariant for all polynomials f .

COROLLARY 120. If λ is an eigenvalue of T then mT (λ ) = 0. In particular, if mT (0) 6= 0 then
T is invertible (0 is cannot be eigenvalue)

We now use the minimality of the minimal polynomial.

THEOREM 121. T is invertible iff mT (0) 6= 0.

PROOF. Suppose that T is invertible and that ∑
d
i=1 aiT i = 0 [note a0 = 0 here]. Then this is not

the minimal polynomial since multiplying by T−1 also gives
d−1

∑
i=0

ai+1T i = 0 .

�

COROLLARY 122. λ ∈ F is an eigenvalue of T iff λ is a root of mT (x).

PROOF. Let S=T−λ Id. Then mS(x)=mT (x+λ ). Then λ ∈SpecF(T ) ⇐⇒ S not invertible ⇐⇒
mS(0) = 0 ⇐⇒ mT (λ ) = 0. �

REMARK 123. The characteristic polynomial PT (x) also has this property – this is how eigen-
values are found in basic linear algebra.

2.3. Generalized eigenspaces and Cayley–Hamilton (Lectures 17-18)

REMARK 124. A slower schedule covers 2.3.1 in one lecture, 2.3.2 and half of 2.3.3 in another,
and finishes 2.3.3 in a third lecture.

2.3.1. Generalized Eigenspaces (Lecture 17). Continue with T ∈ EndF(V ), dimF(V ) = n.
Recall that T is diagonable iff V is the direct sum of the eigenspace. For non-diagonable maps we
need something more sophisticated.

PROBLEM 125. Find a matrix A ∈M2(F) which only has a 1-d eigenspace.

DEFINITION 126. Call v ∈ V a generalized eigenvector of T if for some λ ∈ F and k ≥ 1,
(T −λ )k v= 0. Let Vλ ⊂V denote the set of generalized λ -eigenvectors and 0. Call λ a generalized
eigenvalue of T if Vλ 6= {0}.

In particular, if T v = λv then v ∈Vλ .
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PROPOSITION 127 (Generalized eigenspaces). (1) Each Vλ is a T -invariant subspace.
(2) Let λ 6= µ . Then (T −µ) is invertible on Vλ .
(3) Vλ 6= {0} iff λ ∈ SpecF(T ).

PROOF. Let v,v′ ∈Vλ be killed by (T −λ )k ,(T −λ )k′ respectively. Then αv+βv′ is killed by
(T −λ )max{k,k′}. Also, (T −λ )k T v = T (T −λ )k v = 0 so T v ∈Vλ as well.

Let v∈Ker(T−µ) be non-zero. By Lemma 118, for any k we have (T −λ )k v=(µ−λ )k v 6= 0
so v /∈Vλ .

Finally, given λ and non-zero v∈Vλ let k be minimal such that (T −λ )k v= 0. Then (T −λ )k−1 v
is non-zero and is an eigenvector of eigenvalue λ . �

THEOREM 128. The sum
⊕

λ∈SpecF (T )Vλ ⊂V is direct.

PROOF. Let ∑
r
i=1 vi = 0 be a minimal dependence with vi ∈ Vλi for distinct λi. Applying

(T −λr)
k for k large enough to kill vr we get the dependence.

r−1

∑
i=1

(T −λr)
k vi = 0 .

Now (T −λr)
k vi ∈ Vλi since these are T -invariant subspaces, and for 1 ≤ i ≤ r− 1 is non-zero

since T −λr is invertible there. This shorter dependence contradicts the minimality. �

REMARK 129. The sum may very well be empty – there are non-trivial maps without eigen-

values (for example
(

−1
1

)
∈M2(R)).

2.3.2. Algebraically closed fields. We all know that sometimes linear maps fail to have eigen-
values, even though they “should”. In this course we’ll blame the field, not the map, for this
deficiency.

DEFINITION 130. Call the field F algebraically closed if every non-constant polynomial f ∈
F [x] has a root in F . Equivalently, if every non-constant polynomial can be written as a product of
linear factors.

FACT 131 (Fundamental theorem of algebra). C is algebraically closed.

REMARK 132. Despite the title, this is a theorem of analysis.

Discussion. The goal is to create enough eigenvalues so that the generalized eigenspaces ex-
plain all of V . The first point of view is that we can simple “define the problem away” by restrict-
ing to the case of algebraically closed fields. But this isn’t enough, since sometimes we are given
maps over other fields. This already appears in the diagonable case, dealt with in 223: we can view(

−1
1

)
∈M2(R) instead as

(
−1

1

)
∈M2(C), at which point it becomes diagonable. In other

words, we can take a constructive point of view:
• Starting with any field F we can “close it” by repeatedly adding roots to polynomial

equations until we can’t, obtaining an “algebraic closure” F̄ [the difficulty is in showing
the process eventually stops].

– This explains the “closed” part of the name – it’s closure under an operation.
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– [Q: do you need the full thing? A: In fact, it’s enough to pass to the splitting field of
the minimal polynomial]

• We now make this work for linear maps, with three points of view:
(1) (matrices) Given A ∈Mn(F) view it as A ∈Mn(F̄), and apply the theory there.
(2) (linear maps) Given T ∈ EndF(V ), fix a basis {vi}

n
i=1 ⊂ V , make the formal span

V̄ =
⊕n

i=1 F̄vi and extends T to V̄ by the property of having the same matrix.
(3) (coordinate free) Given V over F set V̄ = F̄⊗F V (considering F̄ as an F-vectorspace),

and extend T (by T̄ = IdF̄⊗FT ).

2.3.3. The direct sum decomposition and Cayley–Hamilton (Lecture 18).

LEMMA 133. Suppose F is algebraically closed and that 1 ≤ dimF V < ∞. Then every T ∈
EndF(V ) has an eigenvector.

PROOF. mT (x) has roots. �

We suppose now that F is algebraically closed, in other words that every linear map has an
eigenvalue. The following is the key structure theorem for linear maps:

THEOREM 134. (with F algebraically closed) We have V =
⊕

λ∈SpecF (T )Vλ .

PROOF. Let mT (x) = ∏
r
i=1 (x−λi)

ki and let W =
⊕r

i=1Vλi . Supposing that W 6= V , let V̄ =
V/W and consider the quotient map T̄ ∈EndF(V̄ ) defined by T̄ (v+W )= T v+W . Since dimF V̄ ≥
1, T̄ has an eigenvalue there. We first check that this eigenvalue is one of the λi. Indeed, for any
polynomial f ∈F [x], f (T̄ )(v+W ) = ( f (T )v)+W , and in particular mT (T̄ ) = 0 and hence mT̄ |mT .

Renumbering the eigenvalues, we may assume V̄λr 6= {0}, and let v∈V be such that v+W ∈ V̄λr

is non-zero, that is v /∈W . Since ∏
r−1
i=1 (T̄ −λi)

ki is invertible on V̄λr , u = ∏
r−1
i=1 (T −λi)

ki v /∈W .
But (T −λr)

kr u = mT (T )v = 0 means that u ∈VλR ⊂W , a contradiction. �

PROPOSITION 135. In mT (x) = ∏
r
i=1 (x−λi)

ki , the number ki is the minimal k such that
(T −λi)

k = 0 on Vλi .

PROOF. Let Ti be the restriction of T to Vλi . Then (Ti−λi)
k is the minimal polynomial by

assumption. But mT (Ti) = 0. It follows that (x−λi)
k |mT and hence that k ≤ ki. Conversely, since

∏ j 6=i
(
T −λ j

)k j is invertible on Vλi , we see that (T −λi)
ki = 0 there, so ki ≥ k. �

Summary of the construction so far:
• F algebraically closed field, dimF V = n, T ∈ EndF(V ).
• mT (x) = ∏

r
i=1 (x−λi)

ki the minimal polynomial.
• Then V =

⊕r
i=1Vλi where on Vλi we have(T −λi)

ki = 0 but (T −λi)
ki−1 6= 0.

We now study the restriction of T to each Vλi , via the map N = T −λi, which is nilpotent of degree
ki.

DEFINITION 136. A map N ∈ EndF(V ) such that Nk = 0 for some k is called nilpotent. The
smallest such k is called its degree of nilpotence.

LEMMA 137. Let N ∈ EndF(V ) be nilpotent. Then its degree of nilpotence is at most dimF V .

PROOF. Exercise. �

23



PROOF. Define subspaces Vk by V0 = V and Vi+1 = N(Vi). Then V = V0 ⊃ V1 · · · ⊃ Vi ⊃ ·· · .
If at any stage Vi = Vi+1 then Vi+ j = Vi for all j ≥ 1, and in particular Vi = {0} (since Vk = 0). It
follows that for i < k, dimVi+1 < dimVi and the claim follows. �

COROLLARY 138 (Cayley–Hamilton Theorem). Suppose F is algebraically closed. Then
mT (x)|pT (x) and, equivalently, pT (T ) = 0. In particular, degmT ≤ dimF V .

Recall the that the characteristic polynomial of T is the polynomial pT (x) = det(x Id−T ) of
degree dimF V , and that is also has the property that λ ∈ SpecF(T ) iff pT (λ ) = 0.

PROOF. The linear map x Id−T respects the decomposition V =
⊕r

i=1Vλi . We thus have
pT (x) = ∏

r
i=1 pT �Vλi

(x). Since pT �Vλ
(x) has the unique root λ , it is the polynomial (x−λ )dimF Vλ ,

so

pT (x) =
r

∏
i=1

(x−λi)
dimVλi .

Finally, ki is the degree of nilpotence of (T −λi) on Vλi . Thus ki ≤ dimF̄ Vλi �

We now resolve a lingering issue:

LEMMA 139. The minimal polynomial is independent of the choice of the field. In particular,
the Cayley–Hamilton Theorem holds over any field.

PROOF. Whether
{

1,T, . . . ,T d−1} ⊂ EndF(V ) are linearly dependent or not does not depend
on the field. �

THEOREM 140 (Cayley–Hamilton). Over any field we have mT (x)|pT (x) or, equivalently,
pT (T ) = 0.

PROOF. Extend scalars to an algebraic closure. This does not change either of the polynomials
mT , pT . �

2.4. Nilpotent maps and Jordan blocks (Lectures 19-20)

2.4.1. Jordan blocks (Lecture 19). We finally turn to the problem of finding good bases for
linear maps, starting with the nilpotent case. Here F can be an arbitrary field.

To start with, consider the filtration {0}( Ker(N)( Ker(N2)( · · ·(V = Ker(Nk) where k is
the degree of nilpotence. Choose a basis as follows:

(1) Choose a basis of size m1 in Ker(N).
(2) Add m2 vectors to get a basis of Ker(N2)⊃ Ker(N)

...
(3) Add mk vectors to get a basis of V = Ker(Nk).

What is the matrix of N in this basis? It is block-upper triangular. On the diagonal the blocks are
mi×mi, all zero. Above each block is a block of size mi−1×mi where every column is non-zero
(every if v ∈ Ker(Nr)\Ker(Nr−1) then Nv ∈ Ker(Nr−1)\Ker(Nr−2)). Above that no information.

We now try to improve this by carefully choosing the basis to encode more of the action of N.

LEMMA 141. Let N ∈ End(V ) be nilpotent. Let B ⊂ V be a set of vectors such that N(B) ⊂
B∪{0}. Then B is linearly independent iff B∩Ker(N) is.
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PROOF. One direction is clear. For the converse, let ∑
r
i=1 aivi = 0 be a minimal dependence in

B. Apply Ns where s is maximal such that for some i, Nsvi 6= 0 (perhaps s = 0). Then
r

∑
i=1

aiNsvi = 0

where each Nsvi ∈ B∪ {}. If some Nsvi = 0 the new dependence is shorter. Thus they are all
non-zero then by the maximality of s they are all in Ker(N), so we obtain a dependence among
B∩Ker(N), a contradiction. �

COROLLARY 142. Let N ∈ End(V ) and let v ∈ V be non-zero such that Nkv = 0 for some k
(wlog minimal). Then

{
Niv
}k−1

i=0 is linearly independent.

PROOF. N is nilpotent on Span
{

Niv
}k−1

i=0 , this set is invariant, and its intersection with KerN
is exactly

{
Nk−1v

}
6= {0}. �

2.4.2. Jordan canonical form for nilpotent maps (Lecture 20). Our goal is now to decom-
pose V as a direct sum of N subspaces (“Jordan blocks”) each of which has a basis as in the
Corollary.

THEOREM 143 (Jordan form for nilpotent maps). Let N ∈ EndF(V ) be nilpotent. We then have
a decomposition V =

⊕r
j=1Vj where each Vj is an N-invariant Jordan block.

EXAMPLE 144. A =

 1 2 3
1 2 3
−1 −2 −3

=

 1
1
−1

(1 2 3
)
.

• A2 =

 1
1
−1

(1 2 3
) 1

1
−1

(1 2 3
)
= 0, so A is nilpotent. The characterstic poly-

nomial must be x3.

• The image of A is Span


 1

1
−1

. Since A

 3
−1
0

=

 1
1
−1

, Span


 3
−1
0

 ,

 1
1
−1


is a block.

• Taking any other vector in the kernel (say,

 2
−1
0

) we get the basis


 3
−1
0

 ,

 1
1
−1

 ,

 2
−1
0


in which A has the matrix (0 1

0

)
(0)

 .

PROOF. Let N have degree of nilpotence d and kernel W . For 1≤ k≤ d define Wk = Im(Nk)∩
W , so that W0 = W ⊃W1 ⊃Wd = {0}. Now choose a basis C of W compatible with this de-
composition – in other words choose subsets Ck ⊂Wk such that ∪k≥k′Ck is a basis for Wk′ . Let
C = ∪d−1

k=0Ck = {vi}i∈I and for each i define ki by vi ∈Cki . Choose ui such that Nkiui = vi, and for
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1≤ j ≤ ki set vi, j = Nki− jui so that vi,1 = ui and in general Nvi, j =

{
vi, j−1 j ≥ 1
0 j = 1

. It is clear that

SpanF
{

vi, j
}ki

j=1 is a Jordan block, and that B =
{

ui, j
}

i, j is a union of Jordan blocks. �

• The set B is linearly independent: by construction, N(B) ⊂ B∪{0} and B∩W = C is
independent.
• The set B is spanning: We prove by induction on k ≤ d that SpanF(B)⊃ Ker(Nk). This

is clear for k = 0; suppose the result for 0≤ k < d, and let v∈Ker(Nk+1). Then Nkv∈Wk,
so we can write

Nkv = ∑
i:ki≥k

aivi

= ∑
i:ki≥k

aiNk (vi,k+1
)
.

It follows that

Nk

(
v− ∑

i:ki≥k
aivi,k+1

)
= 0 .

By induction, v−∑i:ki≥k aivi,k ∈ SpanF(B), and it follows that v ∈ SpanF(B).

DEFINITION 145. A Jordan basis is a basis as in the Theorem.

LEMMA 146. Any Jordan basis for N has exactly dimF Wk−1− dimF Wk blocks of length k.
Equivalently, up to permuting the blocks, N has a unique matrix in Jordan form.

PROOF. Let
{

vi, j
}

be a Jordan basis. Then KerN =Span
{

vi,1
}

, while
{

vi, j | ki ≥ k, j ≤ ki− k
}

is a basis for Im(Nk). Clearly
{

vi,1 | ki ≥ k
}

then spans Wk and the claim follows. �

2.5. The Jordan canonical form (Lecture 21)

THEOREM 147 (Jordan canonical form). Let T ∈ EndF(V ) and suppose that mT splits into lin-
ear factors in F (for example, that F is algebraically closed). Then there is a basis

{
vλ ,i, j

}
λ ,i, j

of V

such that
{

vλ ,i, j
}

i, j
⊂Vλ is a basis, and such that (T −λ )vλ ,i, j =

{
vλ ,i, j−1 j ≥ 1
0 j = 1

. Furthermore,

writing Wλ =Ker(T−λ ) for the eigenspace, we have for each λ , that 1≤ i≤ dimF Wλ and that the
number of i such that 1≤ j ≤ k is exactly dimF

(
(T −λ )k−1Vλ ∩Wλ

)
−dimF

(
(T −λ )kVλ ∩Wλ

)
.

Equivalently, T has a unique matrix in Jordan canonical form up to permuting the blocks.

COROLLARY 148. The algebraic multipicity of λ is dimF Vλ . The geometric multiplicity is the
number of blocks.

EXAMPLE 149 (Jordan forms). (1) A1 =

 2 2 3
1 3 3
−1 −2 −2

 = I +A. This has character-

istic polynomial (x−1)3, A1− I = A and we are back in example 144.
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(2) (taken from Wikibooks:Linear Algebra) pB(x) = (x−6)4.

Let B =


7 1 2 2
1 4 −1 −1
−2 1 5 −1
1 1 2 8

, B′ = B−6I =


1 1 2 2
1 −2 −1 −1
−2 1 −1 −1
1 1 2 2

. Gaussian elimina-

tion shows B′ = E


3 −3 0 0
1 −2 −1 −1
−3 3 0 0
0 0 0 0

, B′2 =


0 3 3 3
0 3 3 3
0 −6 −6 −6
0 3 3 3

 and B′3 = 0. Thus

KerB′ = {(x,y,z,w)t | x = y =−(z+w)} is two-dimensional. We see that the image of
B′2 is spanned by (3,3,−6,3)t , which is (say) B′(2,−1,−1,2)t which (being the last
column) was B′(0,0,0,1)t . Another vector in the kernel is (−1,−1,1,0)t , and we get the

Jordan basis




0
0
0
1

 ,


2
−1
−1
2

 ,


3
3
−6
3

 ,


−1
−1
1
0


.

(3) C =


4 0 1 0
2 2 3 0
−1 0 2 0
4 0 1 2

 acting on V = R4 with pC(x) = (x−2)2 (x−3)2. Then C− 2I =


2 0 1 0
2 0 3 0
−1 0 0 0
4 0 1 0

, C−3I =


1 0 1 0
2 −1 3 0
−1 0 −1 0
4 0 1 −1

, (C−3I)2 =


0 0 0 0
−3 1 −4 0
0 0 0 0
−1 0 2 1

. Thus

Ker(C−2I) = Span{e2,e4}, which must be the 2d generalized eigenspace V2 giving two
1×1 blocks. For λ = 3, Ker(C−3I)= {(x,y,z,w)t | z = y =−x,w = 3x}=Span{(1,−1,−1,3)t}.
This isn’t the whole generalized eigenspace, and

Ker(C−3I)2 =
{
(x,y,z,w)t | y = 3x+4z, w = x−2z

}
= Span

{
(1,−1,−1,3)t ,(1,3,0,1)t} .

This must be the generalized eigenspace V3, since it’s 2d. We need to find the im-
age of (C−3I) [V3]. One vector is in the kernel, so we try the other one, and indeed
(C−3I)(1,3,0,1)t = (1,−1,−1,3). This gives us a 2x2 block, so in the basis


0
1
0
0

 ,


0
0
0
1

 ,


1
−1
−1
3

 ,


1
3
0
1


 the matrix has the form


(2)

(2) (
3 1

3

)
. Note

how the image of (C−3I)2 is exactly V2 (why?)
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(4) V = R6. pD(x) = t6 +3t5−10t3−15t2−9t−2 = (t +1)5(t−2):

D=


0 0 0 0 −1 −1
0 −8 4 −3 1 −3
−3 13 −8 6 2 9
−2 14 −7 4 2 10
1 −18 11 −11 2 −6
−1 19 −11 10 −2 7

, D+I =


1 0 0 0 −1 −1
0 −7 4 −3 1 −3
−3 13 −7 6 2 9
−2 14 −7 5 2 10
1 −18 11 −11 3 −6
−1 19 −11 10 −2 8

,

(D+ I)2 =


1 −1 0 1 −2 −3
−2 −16 9 −11 4 −3
−1 37 −18 17 2 21
1 35 −18 19 −2 15
−1 −53 27 −28 2 −24
2 52 −27 29 −4 21

, (D+ I)3 =


0 0 0 0 0 0
0 −54 27 −27 0 −27
0 108 −54 54 0 54
0 108 −54 54 0 54
0 −162 81 −81 0 −81
0 162 −81 81 0 81

.

(5) First, V2must be a 1-dimensional eigenspace. Gaussian elimination finds the eigenvector
(01,−2,−2,3,−3)t . Next, V−1 must be 5-dimensional. Row-reduction gives: D+ I →

1 0 0 0 −1 −1
0 0 0 1 0 −1/2
0 1 0 0 1 3/2
0 0 1 0 2 3/2
0 0 0 0 0 0
0 0 0 0 0 0

, (D+ I)2→


2 0 −1 3 −4 −5
0 2 −1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

. So the Ker(D+ I)

is two-dimensional (since (D + I)2 6= 0 there will be a block of size at least 3; since
(D+ I)3has rank one, it has the 5d kernel V−1 = {x | x3 = 2x2 + x4 + x6} so the largest
block is 3, and so the other block must have size 2. We need a vector from the generalized
eigenspace in the image of (D+ I)2. Since (D+ I)3 e1 = 0 but the first column of (D+ I)2

is non-zero, we see that (D+ I)2 e1 = (1,−2,−1,1,−1,2)t has preimage (D+ I)e1 =
(1,0,−3,−2,1,−1)t , and we obtain our first block. Next, we need an eigenvector in the
kernel and image of D+ I, but any vector in the kernel is also in the image (no blocks
of size 1), so we cam take any vector in Ker(D+ I) independent of the one we already
have. Using the row-reduced form we see that (1,−1,−2,0,1,0)t is such a vector. Then
we solve 

1 0 0 0 −1 −1
0 −7 4 −3 1 −3
−3 13 −7 6 2 9
−2 14 −7 5 2 10
1 −18 11 −11 3 −6
−1 19 −11 10 −2 8

x =


1
−1
−2
0
1
0

 ,

finding for example the vector (1,0,−1,−1,0,0)t and our second block. We conclude

that in the basis




0
1
−2
−2
3
−3

 ,


1
−2
−1
1
−1
2

 ,


1
0
−3
−2
1
−1

 ,


1
0
0
0
0
0

 ,


1
−1
−2
0
1
0

 ,


1
0
−1
−1
0
0




the matrix has the
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form 

(
2
) −1 1

−1 1
−1

 (
−1 1

−1

)
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CHAPTER 3

Vector and matrix norms

For the rest of the course our field of scalars is either R or C.

3.1. Norms on vector spaces (Lecture 22)

3.1.1. Review of metric spaces.

DEFINITION 150. A metric space is a pair (X ,dX) where X is a set, and dX : X ×X → R≥0 is
a function such that for all x,y,z ∈ X , dX(x,y) = 0 iff x = y, dX(x,y) = dX(y,z) and (the triangle
inequality) dX(x,z)≤ dX(x,y)+dX(y,z).

NOTATION 151. For x ∈ X and r ≥ 0 we write BX (x,r) = {y ∈ X | dX(x,y)≤ r} for the closed
ball of radius r around x, B◦X(x,r) = {y ∈ X | dX(x,y)< r} for the open ball.

DEFINITION 152. Let (X ,dX) ,(Y,dY ) be metric spaces and let f : X → Y be a function.

(1) We say f is continuous if ∀x ∈ X : ∀ε > 0 : ∃δ > 0 : f (BX(x,δ ))⊂ BY ( f (x),ε).
(2) We say f is uniformly continuous ∀ε > 0 : ∃δ > 0 : ∀x ∈ X : f (BX(x,δ ))⊂ BY ( f (x),ε).
(3) We say f is Lipschitz continuous if in (2) we can take δ = Lε , in other words if for all

x 6= x′ ∈ X ,
dY
(

f (x), f (x′)
)
≤ LdX

(
x,x′
)
.

In that case we let ‖ f‖Lip denote the smallest L for which this holds.

Clearly (3)⇒ (2)⇒ (1).

LEMMA 153. The composition of two functions of type (1),(2),(3) is again a function of that
type. In particular, ‖ f ◦g‖Lip ≤ ‖ f‖Lip‖g‖Lip.

DEFINITION 154. We call the metric space (X ,dX) complete if every Cauchy sequence con-
verges.

3.1.2. Norms. Fix a vector space V .

DEFINITION 155. A norm on V is a function ‖·‖ : V → R≥0 such that ‖v‖ = 0 iff v = 0,
‖αv‖= |α|‖v‖ and ‖u+ v‖ ≤ ‖u‖+‖v‖. A normed space is a pair (V,‖·‖).

LEMMA 156. Let ‖·‖ be a norm on V . Then the function d(u,v) = ‖u− v‖ is a metric.

EXERCISE 157. The map ‖7→‖d is a bijection between norms on V and metrics on V which are
(1) translation-invariant d(u,v) = d (u+w,v+w) and (2) 1-homogenous: d (αu,αv) = |α|d (u,v).

The restriction of a norm to a subspace is a norm.
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3.1.3. Finite-dimensional examples.
EXAMPLE 158. Standard norms on Rn and Cn:
(1) The supremum norm ‖v‖

∞
= max{|vi|}n

i=1, parametrizing uniform convergence.
(2) ‖v‖1 = ∑

n
i=1 |vi|.

(3) The Euclidean norm ‖v‖2 =
(

∑
n
i=1 |vi|2

)1/2
, connected to the inner product 〈u,v〉 =

∑
n
i=1 uivi (prove4 inequality from this by squaring norm of sum).

(4) For 1 < p < ∞, ‖v‖p = (∑n
i=1 |vi|p)1/p.

PROOF. These functions are clearly homogeneous, and clearly are non-zero if v 6= 0; the only
non-trivial part is the triangle inequality (“Minkowsky’s inequality”). This is easy for p = 1,∞,
well-known for p = 2. Other cases resolved in supplement to PS8. �

EXERCISE 159. Show that limp→∞ ‖v‖p = ‖v‖∞
.

We have a geometric interpretation. The unit ball of a norm is the set B=B(0,1)= {v ∈V | ‖v‖ ≤ 1}.
This determines the norm ( 1

‖v‖ is the largest α such that αv ∈ B). Now applying a linear map to B
gives a the ball of a new norm.

EXERCISE 160. Draw the unit balls of

PROPOSITION 161 (Pullback). Let T : U ↪→V be an injectivel linear map. Let ‖·‖V be a norm

on V . Then ‖u‖ def
= ‖T u‖V defines a norm on U.

PROOF. Easy check. �

3.1.4. Infinite-dimensional examples. Now the norm comes first, the space second.

EXAMPLE 162. For a set X let `∞(X)=
{

f ∈ FX | sup{| f (x)| : x ∈ X}< ∞
}

, ‖ f‖
∞
= supx∈X | f (x)|.

PROOF. The map ‖·‖
∞

: XF → [0,∞] satisfies the axioms of a norm, suitably extended to in-
clude the value ∞. That the set of vectors of finite norm is a subspace follows from the scaling and
triangle inequalities. �

REMARK 163. A vector space with basis B can be embedded into `∞(B) (we’ve basically seen
this).

EXAMPLE 164. `p(N) =
{

a ∈ FN : ∑
∞
i=1 |ai|p < ∞

}
with the obvious norm.

In the continuous case we a construction from earlier in the course:

DEFINITION 165. Lp(R)= { f : R→ F [measurable] |
∫
R | f (x)|

p dx < ∞}
/
{ f | f = 0 a.e.}with

the natural norm.

REMARK 166. The quotient is essential: for actualy functions, can have
∫
| f (x)|p dx = 0 with-

out f = 0 exactly. In particular, elements of Lp(R) don’t have specific values.

FACT 167. In each equivalence class in Lp(R) there is at most one continuous representative.

So part of PDE is about whether an Lp solution can be promoted to a continuous functiuon. We
give an example theorem:

THEOREM 168 (Elliptic regularity). Let Ω⊂ R2 be a domain, and let f ∈ L2(Ω) satisfy ∆ f =
λ f distributionally:: for g ∈C∞

c (Ω),
∫

Ω
f ∆g = λ

∫
f g. Then there is a smooth function f̄ such that

∆ f = λ f pointwise and such that f = f̄ almost everywhere.
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3.1.5. Converges in the norm. While there are many norms on Rn, it turns out that there is
only one notion of convergence.

LEMMA 169. Every norm on Rn is a continuous function.

PROOF. Let M = maxi ‖ei‖. Then

‖x‖=

∥∥∥∥∥ n

∑
i=1

xiei

∥∥∥∥∥≤ n

∑
i=1
|xi|‖ei‖ ≤M ‖x‖1 .

In particular, ∣∣‖x‖−∥∥y
∥∥∣∣≤ ∥∥x− y

∥∥≤M
∥∥x− y

∥∥
1 .

�

DEFINITION 170. Call two norms equivalent if there are 0 < m≤M such that m‖x‖ ≤ ‖x‖′ ≤
M ‖x‖ holds for all x ∈V .

EXERCISE 171. This is an equivalence relation. The norms are equivalent iff the same se-
quences of vectors satisfy limn→∞ xn = 0.

THEOREM 172. All norms on Rn (and Cn) are equivalent.

PROOF. It is enough to show that they are all equivalent to ‖·‖1. Accordingly let ‖·‖ be any
other norm. Then the Lemma shows that there is M such that

‖x‖ ≤M ‖x‖1 .

Next, the “sphere”{x | ‖x‖1 = 1} is closed and bounded, hence compact. Accordingly let m =
min{‖x‖ | ‖x‖1 = 1}. Then m > 0 since ‖0‖1 = 0 6= 1. Finally, for any x 6= 0 we have

‖x‖
‖x‖1

=

∥∥∥∥ x
‖x‖1

∥∥∥∥≥ m

since
∥∥∥ x
‖x‖1

∥∥∥
1
= 1. It follows that

m‖x‖1 ≤ q‖x‖ ≤M ‖x‖1

�

3.2. Norms on matrices (Lectures 23-24)

DEFINITION 173. Let U,V be normed spaces. A map T : U →V is called bounded if there is
M ≥ 0 such that ‖T u‖V ≤M ‖u‖U for all u∈U . The smallest such M is called the (operator) norm
of T .

REMARK 174. Motivation: Let U be the space of initial data for an evolution equation (say
wave, or heat). Let V be the space of possible states at time t. Let T be “time evolution”. Then a
key part of PDE is finding norms in which T is bounded as a map from U to V . This shows that
solution exist, and that they are unique.

EXAMPLE 175. The identity map has norm 1. Now consider the matrix A =

(
1 1
0 1

)
acting

on R2.
32



(1) As a map from `1→ `1 we have∥∥∥∥A
(

x
y

)∥∥∥∥
1
= |x+ y|+ |y| ≤ 2

∥∥∥∥(x
y

)∥∥∥∥
1
,

with equality if x = 0. Thus ‖A‖1 = 2.
(2) Next, ∥∥∥∥A

(
x
y

)∥∥∥∥2

2
= |x+ y|2 + |y|2 ≤ 3+

√
5

2

∣∣x2 + y2∣∣ .
(3) Finally, ∥∥∥∥A

(
x
y

)∥∥∥∥
∞

= max{|x+ y|, |y|} ≤ 2max{|x|, |y|}

with equality if x = y, Thus ‖A‖
∞
= 2.

EXAMPLE 176. Consider Dx : C∞
c (R)→ C∞

c (R). This is not bounded in any norm (consider
f (x) = e2πikx).

LEMMA 177. Every map of finite-dimensional spaces is bounded.

PROOF. Identify U with Rn. Then the ‖·‖U is equivalent with ‖·‖1, so there is A such that
‖u‖1 ≤ A‖u‖U . Now the map u 7→ ‖T u‖V is 1-homogenous and satisfies the triangle inequality, so
by the proof of Lemma 169 there is B so that ‖T u‖V ≤ B‖u‖1 ≤ (AB)‖u‖U . �

LEMMA 178. Let T,S be bounded and composable. Then ST is bounded and ‖ST‖ ≤ ‖S‖‖T‖.

PROOF. For any u ∈U , ‖ST u‖W ≤ ‖S‖‖T u‖V ≤ ‖S‖‖T‖‖u‖U . �

PROPOSITION 179. The operator norm is a norm on Homb(U,V ), the space of bounded maps
U →V .

PROOF. For any S,T ∈Homb(U,V ), |α|‖T‖+‖S‖ is a bound for αT +S. Since the zero map
is bounded it follows that Homb(U,V ) ⊂ Hom(U,V ) is a subspace, and setting α = 1 gives the
triangle inequality. If T 6= 0 then there is u such that T u 6= 0 at which point

‖T‖ ≥ ‖T u‖
‖u‖

> 0 .

Finally, ‖(αT )u‖= |α|‖T u‖ ≤ |α|‖T‖‖u‖ so ‖αT‖ ≤ |α|‖T‖. But then

‖T‖=
∥∥∥∥ 1

α
αT
∥∥∥∥≤ 1
|α|
‖αT‖

gives the reverse inequality. �

3.3. Example: eigenvalues and the power method (Lecture 25)

Let A be diagonable. Want eigenvalues of A. Raising A to large powers selects the eigenvalue
with largest component.

• Algorithm: multiply by A and renormalize.
• Advantage: if A sparse only need to multiply by A.
• Rate of convergence related to spectral gap.

33



3.4. Sequences and series of vectors and matrices (Lectures 26-27)

3.4.1. Completeness (Lecture 26).

DEFINITION 180. A metric space is complete if every Cauchy sequence in it converges.

EXAMPLE 181. R. Rn in any norm. Hom(Rn,Rm) (because isom to Rmn).

FACT 182. Any metric space has a completion. [note associated universal property and hence
uniqueness]

THEOREM 183. Let (U,‖·‖U) ,(V,‖·‖V ) be normed spaces with V complete. Then Homb(U,V )
is complete with respect to the operator norm.

PROOF. Let {Tn}∞

n=1 be a Cauchy sequences of linear maps. For fixed u ∈ U , the sequence
{Tnu} is Cauchy: ‖(Tnu−Tmu)‖V ≤ ‖Tn−Tm‖‖u‖. It is therefore convergent – call the limit
T u. This is linear since αTnu + Tnu′ converges to αT u + T u′ while Tn (αu+u′) converges to
T (αu+u′).

Since |‖Tn‖−‖Tm‖| ≤ ‖Tn−Tm‖, the norms themselves are a Cauchy sequences of real num-
bers, in particular a convergent sequence. Now for fixed u, we have ‖T u‖V = limn→∞ ‖Tnu‖V . We
have the pointwise bound ‖Tnu‖ ≤ ‖Tn‖‖u‖U . Passing to the limit we find

‖T u‖V ≤
(

lim
n→∞
‖Tn‖

)
‖u‖U

so T is bounded. Finally, given ε let N be such that if m,n≥ N then ‖Tn−Tm‖ ≤ ε . Then for any
u ∈U ,

‖Tnu−Tmu‖ ≤ ‖Tn−Tm‖‖u‖U ≤ ε ‖u‖U .

Letting m→ ∞ and using the continuity of the norm, we get that if n≥ N then

‖Tnu−T u‖ ≤ ε ‖u‖U .

Since u was arbitrary this shows that ‖Tn−T‖ ≤ ε for n≥ N and we are done. �

EXAMPLE 184. Let K be a compact space. Then C(K), the space of continuous functions on
K, is complete wrt ‖·‖

∞
.

PROOF. Continuous functions on a compact space are bounded. Let { fn}∞

n=1 ⊂ C(K) be a
Cauchy sequence. Then for fixed x∈X , { fn(x)}∞

n=1⊂C is a Cauchy sequence, hence convergent to
some f (x)∈C. To see the convergence is in the norm, give ε > 0 let N be such that ‖ fn− fm‖∞

≤ ε

for n,m≥ N. Then for any x,
| fn(x)− fm(x)| ≤ ε .

Letting m→ ∞ we find for all n≤ N that | fn(x)− f (x)| ≤ ε , that is

‖ fn− f‖
∞
≤ ε.

Finally, we need to show that f is continuous. Given x ∈ X and ε > 0 let N be as above and let
n≥ N. For any x, the continuity of fn gives a neighbourhood of x where | fn(x)− fn(y)| ≤ ε . Then

| f (x)− f (y)| ≤ | f (x)− fn(x)|+ | fn(x)− fn(y)|+ | fn(y)− f (y)| ≤ 3ε

in that neighbourhood, so f is continuous at x. �

EXERCISE 185. Generalize this example:
(1) Show that `∞(X) is complete for any set X .
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(2) For a general (topological) space X , show that Cb(X) = C(X)∩ `∞(X) is complete with
respect to the supremum norm.

Now fix a complete normed space V .
(3) For a set X write `∞(X ;V ) for the space of bounded functions X → V . Then `∞(X ;V ) is

complete.
(4) Cb(X ;V ) =C(X ;V )∩ `∞(X ;V ) is complete.

3.4.2. Series of vectors and matrices (Lecture 27). Fix a complete normed space V .

DEFINITION 186. Say the series ∑
∞
n=1 vn converges absolutely if ∑

∞
n=1 ‖vn‖V < ∞.

PROPOSITION 187. If ∑
∞
n=1 vn converges absolutely it converges, and ‖∑∞

n=1 vn‖V ≤∑
∞
n=1 ‖vn‖V .

PROOF. Standard. �

EXAMPLE 188 (Exponential series). Let V be a complete normed space and let T ∈ Endb(V ).

Then exp(T ) def
= ∑

∞
n=0

1
n!T

n converges absolutely.

Another instance of this phenomenon:

THEOREM 189 (Weierstrass’s M-test). Let X be a (topological) space, fn : X → V contin-
uous. Suppose that we have Mn such that ‖ fn(x)‖V ≤ Mn holds for all x ∈ X. Suppose that
M = ∑

∞
n=1 Mn < ∞. Then ∑n fn converges uniformly to a continuous function F : X →V .

PROOF. By the Proposition this amounts to showing that the space Cb(X ,V ) (continuous func-
tions X → V with ‖ f (x)‖V bounded) is complete with respect to the supremum norm ‖ f‖

∞
=

sup{‖ f (x)‖V : x ∈ X}. �

We will apply this to power series of matrices.

EXAMPLE 190. Let ‖·‖ be some operator norm on Mn(R), and let A∈Mn(R). For 0 < R < 1
‖A‖

(any R > 0 if A = 0) and z ∈ C with |z| ≤ R consider the series
∞

∑
n=0

znAn .

We have ‖An‖ ≤ ‖A‖n (operator norm!) so that ‖znAn‖ ≤ (R‖A‖)n. Since ∑
∞
n=0 (R‖A‖)

n con-
verges, we see that our series converges and the sum is continuous in z (and in A). Taking the
union we get convergence in |z| < 1

‖A‖ . The limit is (Id−zA)−1 (incidentally showing this is in-
vertible).

REMARK 191. In fact, the radius of convergence is 1
ρ(A) .

3.4.3. Vector-valued limits and derivatives. We recall facts about vector-valued limits.

LEMMA 192 (Limit arithmetic). Let U,V,W be normed spaces. Let ui(x) : X→U, αi(x) : X→
F, T (x) : X → Homb(U,V ), S(x) : X → Homb(V,W ). Then, in each case supposing the limits on
the right exist, the limits on the left exist and equality holds:

(1) limx→x0 (α1(x)u1(x)+α2(x)u2(x))= (limx→x0 α1(x))(limx→x0 u1(x))+(limx→x0 α2(x))(limx→x0 u2(x)).
(2) limx→x0 T (x)u(x) = (limx→x0 T (x))(limx→x0 u(x)).
(3) limx→x0 S(x)T (x) = (limx→x0 S(x))(limx→x0 T (x)).

PROOF. Same as in R, replacing |·| with ‖·‖V . �
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We can also differentiate vector-valued functions (see Math 320 for details)

DEFINITION 193. Let X ⊂ Rn be open. Say that f : X → V is strongly differentiable at x0 if
there is a bounded linear map L : Rn→V such that

lim
h→0

‖ f (x0 +h)− f (x0)−Lh‖V
‖h‖Rn

= 0 .

In that case we write D f (x0) for L.

It is clear that differentiability at x0 implies continuity at x0.

LEMMA 194 (Derivatives). Let U,V,W be normed spaces. Let ui(x) : X → U, T (x) : X →
Homb(U,V ), S(x) : X → Homb(V,W ) be differentiable at x0. Then the derivatives on the left exist
and take the following values:

(1) D(u1 +u2)(x0) = Du1(x0)+Du2(x0).
(2) D(T u)(x0)(h) = (DT (x0)(h) ·u(x0))+T (x0) ·Du(x0)(h).
(3) D(ST )(x0)(h) = (DS(x0)(h) ·T (x0))+(S(x0) ·DT (x0)(h)).

PROOF. Same as in R, replacing |·| with ‖·‖V . �

3.5. The exponential series (Lecture 28)

We apply Weierestrass’s M-test to power series.

THEOREM 195. Let X be a (topological) space, fn : X →V continuous. Suppose that we have
Mn such that ‖ fn(x)‖V ≤ Mn holds for all x ∈ X with M = ∑

∞
n=1 Mn < ∞. Then ∑n fn converges

uniformly to a continuous function F : X →V and ‖F(x)‖V ≤M for all x ∈ X.

COROLLARY 196. Let V be a complete normed space, and let ∑n anzn be a power series with
radius of convergence R. Then for any A ∈ Endb(V ), ∑n anAn converges absolutely if ‖A‖ < R,
uniformly in {‖A‖ ≤ R− ε}

PROOF. Let X =V = Endb(V ), fn(A) = anAn, so that ‖ fn(A)‖ ≤ |an|‖A‖n. For T < R we have
∑n |an|T n < ∞ and hence uniform convergence in {‖A‖ ≤ T}. �

We therefore fix a normed space V , and and plug matrices A ∈ Endb(V ) into power series.

EXAMPLE 197. exp(A) = ∑k
Ak

k! converges everywhere.

REMARK 198. We’ll look at two kinds of matrix-valued series:

(1) Power series with matrix coefficients: f (t) = ∑
∞
n=0 Antn. Here, t is a scalar and An ∈

Endb(V ).
(2) Plugging in matrices into power series: given f (z) = ∑

∞
n=0 anzn set f (A) = ∑

∞
n=0 anAn.

3.5.1. Basic properties.

LEMMA 199. exp(tA)exp(sA) = exp((t + s)A).
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PROOF. The series converge absolutely, so the product converges in any order. We thus have

exp(tA)exp(sA) =

(
∞

∑
k=0

(tA)k

k!

)(
∞

∑
l=0

(sA)l

l!

)
= ∑

k,l

tks`Ak+`

k!`!

=
∞

∑
m=0

∑
k+l=m

tks`Ak+`

k!`!
=

∞

∑
m=0

Am

m! ∑
k+l=m

m!
k!`!

tks`

=
∞

∑
m=0

Am

m!
(t + s)m = exp((t + s)A) .

�

Recap: multiplication of absolutely convergent series.

LEMMA 200. Let ∑n un converge absolutely, Then it converges in any reordering and its sum
is unchanged.

PROOF. Let σ ∈ SN. Given N > 0 let K > maxσ−1 ({0,1, . . . ,N}). Then

∥∥∥∥∥ K

∑
k=0

uσ(k)−
N

∑
n=0

un

∥∥∥∥∥ =

∥∥∥∥∥∥∥∥ ∑
0≤k≤K
σ(k)>N

uσ(k)

∥∥∥∥∥∥∥∥
≤ ∑

0≤k≤K
σ(k)>N

∥∥∥uσ(k)

∥∥∥
≤ ∑

n>N
‖un‖ .

Now given ε > 0 let N be large enough such that ∑n>N ‖un‖< ε (exists by absolute convergence).
Then for K large enough as above,∥∥∥∥∥ K

∑
k=0

uσ(k)−
∞

∑
n=0

un

∥∥∥∥∥ ≤
∥∥∥∥∥∑

n>N
un

∥∥∥∥∥+ ∑
n>N
‖un‖

≤ 2 ∑
n>N
‖un‖ ≤ 2ε .

�

PROPOSITION 201. Let A = ∑n an, B = ∑m bm be convergent series of positive real numbers.
Then ∑n,m anbm converges to AB.

PROOF. Let S ⊂ N2 be finite so that ∑(n,m)∈S anbm is a partial sum. Then for N large enough
we have S⊂ {0,1, . . . ,N}2 so that

∑
(m,n)∈S

anbm ≤ ∑
0≤n,m≤N

anbm =

(
∑

n≤N
an

)(
∑

m≤N
bm

)
≤ AB
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and the series converges. To evaluate the limit it’s enough to note that the subsequence of partial
sums

∑
0≤n,m≤N

anbm =

(
∑

n≤N
an

)(
∑

m≤N
bm

)
evidently converges to AB. �

THEOREM 202. Let A = ∑
∞
n=0 An, B = ∑

∞
m=0 Bm be absolutely convergent (An ∈ Homb(V,W ),

Bm ∈ Homb(U,V )). Then ∑m,n≥0 AnBm converges absolutely to AB.

PROOF. Since ‖AnBm‖ ≤ ‖An‖‖Bm‖ absolute convergence follows from the Proposition and
the convergence of ∑n ‖An‖ and ∑m ‖Bm‖. To evaluate the sum we again take the “square” partial
sums:

∑
0≤n,m≤N

AnBm =

(
∑

n≤N
An

)(
∑

m≤N
Bm

)
−−−→
N→∞

AB .

�

3.5.2. Differentiation and application to constant-coefficient differential equations.

COROLLARY 203. d
dt exp(tA) = Aexp(tA) = exp(tA)A.

PROOF. At t = 0 we have exp(hA)−Id
h = A+∑

∞
k=1

hk

(k+1)!A
k+1 and∥∥∥∥∥ ∞

∑
k=1

hk

(k+1)!
Ak+1

∥∥∥∥∥≤ ∞

∑
k=1

|h|k

(k+1)!
‖A‖k+1 ≤ exp(|h|‖A‖−1−‖A‖|h|

|h|
−−→
h→0

0 .

In general we have

exp((t +h)A)− exp(tA)
h

= exp(tA)
exp(hA)− Id

h
−−→
h→0

exp(tA)A .

That Aexp(tA) = exp(tA)A follows from considering partial sums. �

Consider the system of differential equations{
d
dt v(t) = Av(t)
v(0) = v0

where A is a bounded map.

PROPOSITION 204. The system has the unique solution v(t) = exp(At)v0.

PROOF. We saw d
dt exp(At)v0 = A(exp(At)v0). Conversely, suppose v(t) is any solution. Then

d
dt

(
e−Atv(t)

)
=

(
e−At(−A)

)
(v(t))+

(
e−At

)
(Av(t))

= e−At (−A+A)v(t) = 0 .

It remains to prove: �

LEMMA 205. Let f : [0,1]→V be differentiable. If f ′(t) = 0 for all t then f is constant.
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PROOF. Suppose f (t0) 6= f (0). Let ϕ ∈V ′ be a bounded linear functional such that ϕ ( f (t0)− f (0)) 6=
0. Then ϕ ◦ f : [0,1]→ Ris differentiable and its derivative is 0:

lim
h→0

ϕ ( f (t +h))−ϕ ( f (t))
h

= lim
h→0

ϕ

(
f (t +h)− f (t)

h

)
= ϕ

(
lim
h→0

f (t +h)− f (t)
h

)
= ϕ( f ′(t)) .

But (ϕ ◦ f )(t0)− (ϕ ◦ f )(0) = ϕ ( f (t0)− f (0)) 6= 0, a contradiction. �

REMARK 206. If V is finite-dimensional, every linear functional is bounded. If V is infinite-
dimensional the existence of ϕ is a serious fact (“Hahn–Banach Theorem”)

Now consider a linear ODE with constant coefficients:{
dn

dtn u(t) = ∑
n−1
k=0 aku(k)(t)

u(k)(0) = wk 0≤ k ≤ n−1 .

We solve this system via the auxilliary vector

v(t) =
(

u(t),u′(t), · · · ,u(n−1)(t)
)
.

We then have
dv(t)

dt
= Av

where A is the companion matrix

A =


0 1 0 0 0
0 0 1 0 0

0 0 0 . . . 0
0 0 0 0 1
a0 a1 · · · an−2 an−1

 .

(companion to the polynomial xn−∑
n−1
k=0 akxk). It follows that

v(t) = eAtw .

Idea: bring A to Jordan form so easier to take exponential.

3.6. Invertibility and the resolvent (Lecture 29)

Say we have a matrix A we’d like to invert. Idea: write A = D+E where we know to invert D.
Then A = D(I +D−1E), so if

∥∥D−1E
∥∥< 1 we have(

I +D−1E
)−1

=
∞

∑
n=0

(
−D−1E

)n

and

A−1 =
∞

∑
n=0

(
−D−1E

)n
D−1

(in particular, A is invertible).

3.6.1. Application: Gauss-Seidel and Jacobi iteration.
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3.6.2. Application: the resolvent. Let V be a complete normed space. Let T be an operator
on V . Define the resolvent set of T to be the set of z ∈ Cfor which T − z Id has a bounded inverse.
Define the spectrum σ(T ) to be the complement of the resolvent set. This contains the actual
eigenvalues (λ such that Ker(T −λ ) is non-trivial) but also λ where T −λ is not surjective, and
λ where an inverse to T −λ exists but is unbounded).

THEOREM 207. The resolvent set is open, and the function (“resolvent function”) ρ(T )→
Endb(V ) given by z 7→ R(z) = (z Id−T )−1 is holomorphic.

PROOF. Suppose z0− T has a bounded inverse. We need to invert z− T for z close to z0.
Indeed, if |z− z0|< 1

‖(z0−T )−1‖ then

−
∞

∑
n=0

(T − z0)
n+1 (z− z0)

n

converges and furnishes the requisite inverse. It is evidently holomorphic in z in the indicated
ball. �

EXAMPLE 208. Let Ω ⊂ R2 be a bounded domain with nice boundary, ∆ = d2

dx2 +
d2

dy2 the
Laplace operator (say defined on f ∈C∞(Ω) vanishing on the boundary). Then ∆ is unbounded,
but its resolvent is nice. For example, R(iε) only has eigenvalues. It follows that the spectrum of
∆ consists of eigenvalues, that is for λ ∈ σ(∆) there is f ∈ L2(Ω) with ∆ f = λ f (and f ∈C∞ by
elliptic regularity).

3.7. Holomorphic calculus

DEFINITION 209. Let f (z) = ∑n anzn. Define f (A) = ∑
∞
n=0 anAn.

LEMMA 210. S f (A)S−1 = f (SAS−1).

PROPOSITION 211. ( f ◦g)(A) = f (g(A)) if it all works.

THEOREM 212. det(exp(A)) = exp(Tr(A)).
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CHAPTER 4

Vignettes

Sketches of applications of linear algebra to group theory.
Key Idea: linearization – use linear tools to study non-linear objects.

4.1. The exponential map and structure theory for GLn(R)

Our goal is to understand the (topologically) closed subgroups of G = GLn(R).
Idea: to a subgroup H assign the logarithms of the elements of H. If H was commutative this

would be a subspace.

DEFINITION 213. Lie(H) = {X ∈Mn(R) | ∀t : exp(tX) ∈ H}.

REMARK 214. Clearly this is invariant under scaling. In fact, enough to take small t, and even
just a sequence of t tending to zero (since {t | exp(tX) ∈ H} is a closed subgroup of R).

THEOREM 215. Lie(H) is a subspace of Mn(R), closed under [X ,Y ].

PROOF. For t ∈Rand m∈Z≥1,
(
exp
( tX

m

)
exp
( tY

m

))m
=
(

Id+ tX+tY
m +O( 1

m2 )
)m
−−−→
m→∞

exp(tX + tY ).

Thus If X ,Y ∈ Lie(H) then also X +Y ∈ Lie(H). �

• Classify subgroups of G containing A by action on Lie algebra and finding eigenspaces.

4.2. Representation Theory of Groups

EXAMPLE 216 (Representations). (1) Structure of GLn(R): let A act on Mn(R).
(2) M manifold, G acting on M, thus acting on Hk(M) and Hk(M).
(3) Angular momentum: O(3) acting by rotation on L2 (R3).
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