Lior Silberman's Math 322: Problem Set 11 (not for submission)

Nilpotent groups

1. Fix a field F (say $F=\mathbb{R}$) and $n \geq 2$. Let $U_{n} \subset \mathrm{GL}_{n}(F)$ denote the group of upper-triangular matrices with 1 s on the main diagonal. Write $E^{i j}$ for the matrix having 1 at position $i j$ and 0 everywhere else.
(a) Show that $Z\left(U_{n}\right)=U_{n, n-1}=\left\{I_{n}+z E^{1, n} \mid z \in F\right\}$, the matrices whose only non-zero entry (above the main diagonal) is in the upper right corner.
(b) Show that the equivalence class of $u \in U_{n}$ in $U_{n} / Z\left(U_{n}\right)$ depends exactly on the entries of u_{n} except the corner one.
(c) Show that $U_{n, n-2}=\left\{u \in U_{n} \mid 2 \leq j<i+n-2 \rightarrow u_{i j}=0\right\}=\left\{I_{n}+\sum_{j-i \geq n-2} z_{i j} E^{i j}\right\}$ is the subgroup $Z^{2}\left(U_{n}\right) \triangleleft U_{n}$ which contains $Z\left(U_{n}\right)$ and such that $Z^{2}\left(U_{n}\right) / Z\left(U_{n}\right)$ is the center of $U_{n} / Z\left(U_{n}\right)$.
(d) For each $1 \leq m \leq n-1$ let

$$
U_{n, m}=\left\{u \in U_{n} \mid 2 \leq j<i+m \rightarrow u_{i j}=0\right\}=\left\{I_{n}+\sum_{j-i \geq m} z_{i j} E^{i j} \mid z_{i j} \in F\right\}
$$

be the group with non-zero entries starting in the m th diagonal above the main diagonal (note that $U_{n, 1}=U_{n}$). Show that $U_{n, m}$ is normal in U_{n}.
(e) Show that $U_{n, m} / U_{n, m+1}$ is the center of $U_{n} / U_{n, m+1}$ and conclude that $Z^{i}\left(U_{n}\right)=U_{n, n-i}$ and that U_{n} is nilpotent.

Definition. For $A, B \subset G$ write $[A, B]$ for the subgroup $\langle\{[a, b] \mid a \in A, b \in B\}\rangle$ generated by all commutators of elements from A, B.
2. (Descending central series) Let $\gamma_{1}(G)=G$ and $\gamma_{i+1}(G)=\left[G, \gamma_{i}(G)\right]$.
(a) Show by induction that $\gamma_{i}(G)$ are normal subgroups such that $\gamma_{i+1}(G) \subset \gamma_{i}(G)$.
(b) Show that $\gamma_{i}(G) / \gamma_{i+1}(G)$ is contained in the centre of $G / \gamma_{i+1}(G)$.
(c) Suppose G is nilpotent of degree d, so that $Z^{d}(G)=G$. Show that $\gamma_{i}(G) \subset Z^{d+1-i}(G)$.

Solvable groups

3. Let G be a group of order $p^{a} q^{b}$. In each case show that G is solvable (hint: find a normal subgroup N and consider N and G / N separately).
(a) $a=2, b=1$.
(b) $a=2, b=2$.
4. Let $n \geq 2$ and let $B_{n}(F) \subset \mathrm{GL}_{n}(F)$ be the subgroup of upper-triangular invertible matrices.
(a) Show that $U_{n} \triangleleft B_{n}$ and that $B_{n} / U_{n} \simeq\left(F^{\times}\right)^{n}$.
(b) Show that $B_{n}(F)$ is solvable.
(c) Show that (unless $\left.F=\mathbb{F}_{2}\right) Z\left(B_{n}(F)\right)$ consists exactly of the scalar matrices with non-zero entries.
(d) Show that for a large enough field $F, Z\left(B_{n} / Z\left(B_{n}\right)\right)=\{e\}$. Conclude that B_{n} is solvable but not nilpotent (this holds for any $F \neq \mathbb{F}_{2}$).

The derived series

5. Fix a group G. The subgroup $G^{\prime}=[G, G]$ is called the derived subgroup.
(a) Show that G^{\prime} is a normal subgroup of G.
(b) Let $N \triangleleft G$. Show that G / N is abelian iff $G^{\prime} \subset N$.

DEF The descending series of subgroups defined by $G^{(0)}=G$ and $G^{(i+1)}=\left(G^{(i)}\right)^{\prime}$ is called the derived series.
(c) Show that $G^{(i)} / G^{(i+1)}$ is abelian.
6. Let $G=G_{0} \triangleright G_{1} \triangleright G_{2} \cdots \triangleright G_{k}$ be a descending series of subgroups of G with G_{i-1} / G_{i} abelian. Note that we don't assume $G_{k}=\{e\}$.
(a) Writing $G^{(1)}=G^{\prime}$ show that $G^{(1)} \subset G_{1}$.
(b) Writing $G^{(2)}=\left(G^{\prime}\right)^{\prime}$ show that $G^{(2)} \subset G_{1}^{\prime} \subset G_{2}$.
(c) Writing $G^{(i+1)}=\left(G^{(i)}\right)^{\prime}$ show by induction that $G^{(i)} \subset G_{i}$ for each i.
(d) Show that G is solvable iff $G^{(n)}=\{e\}$ for some n.

Supplementary problems

Let G be a nilpotent group.
A. Show that X generates G iff its image generates $G^{\mathrm{ab}}=G / G^{\prime}$.
B. Suppose G is finitely generated. Show that every subgroup of G is finitely generated.
B. Show that $G_{\text {tors }}$ is a subgroup of G.

