Lior Silberman's Math 322: Problem Set 11 (not for submission)

Nilpotent groups

- 1. Fix a field F (say $F = \mathbb{R}$) and $n \ge 2$. Let $U_n \subset GL_n(F)$ denote the group of upper-triangular matrices with 1s on the main diagonal. Write E^{ij} for the matrix having 1 at position ij and 0 everywhere else.
 - (a) Show that $Z(U_n) = U_{n,n-1} = \{I_n + zE^{1,n} \mid z \in F\}$, the matrices whose only non-zero entry (above the main diagonal) is in the upper right corner.
 - (b) Show that the equivalence class of $u \in U_n$ in $U_n/Z(U_n)$ depends exactly on the entries of u_n except the corner one.
 - (c) Show that $U_{n,n-2} = \{u \in U_n \mid 2 \le j < i+n-2 \to u_{ij} = 0\} = \{I_n + \sum_{j-i \ge n-2} z_{ij} E^{ij}\}$ is the subgroup $Z^2(U_n) \triangleleft U_n$ which contains $Z(U_n)$ and such that $Z^2(U_n)/Z(U_n)$ is the center of $U_n/Z(U_n)$.
 - (d) For each $1 \le m \le n-1$ let

$$U_{n,m} = \left\{ u \in U_n \mid 2 \le j < i + m \to u_{ij} = 0 \right\} = \left\{ I_n + \sum_{j-i \ge m} z_{ij} E^{ij} \mid z_{ij} \in F \right\}$$

be the group with non-zero entries starting in the *m*th diagonal above the main diagonal (note that $U_{n,1} = U_n$). Show that $U_{n,m}$ is normal in U_n .

(e) Show that $U_{n,m}/U_{n,m+1}$ is the center of $U_n/U_{n,m+1}$ and conclude that $Z^i(U_n) = U_{n,n-i}$ and that U_n is nilpotent.

DEFINITION. For $A, B \subset G$ write [A, B] for the subgroup $\langle \{[a, b] \mid a \in A, b \in B\} \rangle$ generated by all commutators of elements from A, B.

- 2. (Descending central series) Let $\gamma_1(G) = G$ and $\gamma_{i+1}(G) = [G, \gamma_i(G)]$.
 - (a) Show by induction that $\gamma_i(G)$ are normal subgroups such that $\gamma_{i+1}(G) \subset \gamma_i(G)$.
 - (b) Show that $\gamma_i(G)/\gamma_{i+1}(G)$ is contained in the centre of $G/\gamma_{i+1}(G)$.
 - (c) Suppose G is nilpotent of degree d, so that $Z^d(G) = G$. Show that $\gamma_i(G) \subset Z^{d+1-i}(G)$.

Solvable groups

- 3. Let G be a group of order $p^a q^b$. In each case show that G is solvable (hint: find a normal subgroup N and consider N and G/N separately).
 - (a) a = 2, b = 1.
 - (b) a = 2, b = 2.
- 4. Let $n \ge 2$ and let $B_n(F) \subset GL_n(F)$ be the subgroup of upper-triangular invertible matrices.
 - (a) Show that $U_n \triangleleft B_n$ and that $B_n/U_n \simeq (F^\times)^n$.
 - (b) Show that $B_n(F)$ is solvable.
 - (c) Show that (unless $F = \mathbb{F}_2$) $Z(B_n(F))$ consists exactly of the scalar matrices with non-zero entries.
 - (d) Show that for a large enough field F, $Z(B_n/Z(B_n)) = \{e\}$. Conclude that B_n is solvable but not nilpotent (this holds for any $F \neq \mathbb{F}_2$).

The derived series

- 5. Fix a group G. The subgroup G' = [G, G] is called the *derived subgroup*.
 - (a) Show that G' is a normal subgroup of G.
 - (b) Let $N \triangleleft G$. Show that G/N is abelian iff $G' \subseteq N$.

DEF The descending series of subgroups defined by $G^{(0)} = G$ and $G^{(i+1)} = \left(G^{(i)}\right)'$ is called the *derived series*.

- (c) Show that $G^{(i)}/G^{(i+1)}$ is abelian.
- 6. Let $G = G_0 \triangleright G_1 \triangleright G_2 \cdots \triangleright G_k$ be a descending series of subgroups of G with G_{i-1}/G_i abelian. Note that we don't assume $G_k = \{e\}$.
 - (a) Writing $G^{(1)} = G'$ show that $G^{(1)} \subset G_1$.
 - (b) Writing $G^{(2)} = (G')'$ show that $G^{(2)} \subset G'_1 \subset G_2$.
 - (c) Writing $G^{(i+1)} = \left(G^{(i)}\right)'$ show by induction that $G^{(i)} \subset G_i$ for each i.
 - (d) Show that *G* is solvable iff $G^{(n)} = \{e\}$ for some *n*.

Supplementary problems

Let *G* be a nilpotent group.

- A. Show that X generates G iff its image generates $G^{ab} = G/G'$.
- B. Suppose G is finitely generated. Show that every subgroup of G is finitely generated.
- B. Show that G_{tors} is a subgroup of G.