Lior Silberman's Math 322: Problem Set 8 (due 9/11/2017)

On group actions and homomorphisms

1. Let the group G act on the set X.

DEF The kernel of the action is the normal subgroup $K=\{g \in G \mid \forall x \in X: g \cdot x=x\}$.
PRAC K is the kernel of the associated homomorphism $G \rightarrow S_{X}$, hence $K \triangleleft G$ indeed.
(a) Construct an action of G / K on X "induced" from the action of G.

DEF An action is called faithful its the kernel is trivial.
(b) Show that the action of G / K on X is faithful.

SUPP Show that this realizes G / K as a subgroup of S_{X}.
(c) Suppose G acts non-trivially on a set of size n. Show that G has a proper normal subgroup of index at most $n!$.
$\left({ }^{*} \mathrm{~d}\right)$ Show that an infinite simple group has no proper subgroups of finite index.
*2. Let G be a group of finite order n, and let p be the smallest prime divisor of n. Let $M<G$ be a subgroup of index p. Show that M is normal.
RMK In particular, this applies when G is a finite p-group.

Automorphisms of groups and semidirect products

Recall that $\operatorname{Aut}(H)$ is the group of isomorphisms $H \rightarrow H$.
*3. Let H, N be groups, and let $\varphi \in \operatorname{Hom}(H, \operatorname{Aut}(N))$ be an action of H on N by automorphisms. We write φ_{h} rather than $\varphi(h)$ for the automorphism given by $h \in H$, so result of h acting on n (the result of applying the automorphism $\varphi(h)$ to n) will be written $\varphi_{h}(n)$. That φ is a homomorphism is the statement that $\varphi_{h} \circ \varphi_{h^{\prime}}=\varphi_{h h^{\prime}}$.
DEF The (external) semidirect product of H and N along φ is the operation

$$
\left(h_{1}, n_{1}\right) \cdot\left(h_{2}, n_{2}\right)=\left(h_{1} h_{2},\left(\varphi_{h_{2}^{-1}}\left(n_{1}\right)\right) n_{2}\right)
$$

on the set $H \times N$. We denote this group $H \ltimes_{\varphi} N$.
PRAC Verify that when φ is the trivial homomorphism ($\varphi_{h}=\mathrm{id}$ for all $h \in H$), this is the ordinary direct product.
(a) Show that the semidirect product is, indeed, a group.
(b) Show that $f_{H}: H \rightarrow H \ltimes_{\varphi} N$ given by $f(h)=(h, e), f_{N}: N \rightarrow H \ltimes_{\varphi} N$ given by $f(n)=$ (e, n) and $\pi: H \ltimes_{\varphi} N \rightarrow H$ given by $\pi(h, n)=h$ are group homomorphisms.
(c) Show that $\tilde{H}=f_{H}(H)$ and $\tilde{N}=f_{N}(N)$ are subgroups with \tilde{N} normal. Show that for $\tilde{h}=$ (h, e) and $\tilde{n}=(e, n)$ we have $\tilde{h} \tilde{n} \tilde{h}^{-1}=(\varphi(h))(n)$.
(d) Show that $H \ltimes_{\varphi} N$ is the internal semidirect product of its subroups \tilde{H}, \tilde{N}.
4. (Concrete 3(b),(c),(d)) Let $H=\mathbb{R}^{\times}$act on $N=\mathbb{R}$ by multiplication (so $\varphi_{h}(n)=h n$). Show $H \ltimes_{\varphi} N$ is isomorphic to the subgroup $P=\left\{\left.\left(\begin{array}{cc}h & n \\ & 1\end{array}\right) \right\rvert\, h \in \mathbb{R}^{\times}, n \in \mathbb{R}\right\}$ of $\mathrm{GL}_{2}(\mathbb{R})$.
SUPP Do the same with $H=(\mathbb{Z} / n \mathbb{Z})^{\times}, N=\mathbb{Z} / n \mathbb{Z}$. Now P is a finite group.
SUPP Same with $H=\mathrm{GL}_{d}(\mathbb{R}), N=\mathbb{R}^{d}, P=\left\{\left.\left(\begin{array}{cc}h & \frac{n}{2} \\ & 1\end{array}\right) \right\rvert\, h \in \mathrm{GL}_{d}(\mathbb{R}), \underline{n} \in \mathbb{R}^{d}\right\}<\mathrm{GL}_{d+1}(\mathbb{R})$.
5. (Cyclic groups)
(a) Let A be a group. Show that mapping $f \in \operatorname{Hom}\left(C_{n}, A\right)$ to $f\left([1]_{n}\right)$ gives a bijection between $\operatorname{Hom}\left(C_{n}, A\right)$ and the set of $a \in A$ of order dividing n.
(b) Write f_{a} for the homomorphism such that $f([1])=a$. When $A=C_{n}=(\mathbb{Z} / n \mathbb{Z},+)$ show that $f_{a} \circ f_{b}=f_{a b}(a b$ is multiplication $\bmod n)$ and hence that $\operatorname{Aut}\left(C_{n}\right) \simeq(\mathbb{Z} / n \mathbb{Z})^{\times}$.
RMK You've just done a fancy version of problem 4 of PS1

Extra Credit

6. The two parts complete problem 3. For these let $\varphi \in \operatorname{Hom}(H, \operatorname{Aut}(N))$.
(a) For $\alpha \in \operatorname{Aut}(H)$ define $\psi: H \rightarrow \operatorname{Aut}(N)$ by $\psi=\varphi \circ \alpha$ (that is $\psi_{h}=\varphi_{\alpha(h)}$). Show that $F(h, n)=\left(\alpha^{-1}(h), n\right)$ gives an isomorphism $F: H \ltimes{ }_{\varphi} N \rightarrow H \ltimes{ }_{\psi} N$.
(b) For $\beta \in \operatorname{Aut}(N)$ define $\psi: H \rightarrow \operatorname{Aut}(N)$ by $\psi_{h}=\beta \circ \varphi_{h} \circ \beta^{-1}$ (this is conjugation in $\operatorname{Aut}(N)!)$. Show that $H \ltimes_{\varphi} N \simeq H \ltimes_{\psi} N$.
(c) Let $a, b \in \operatorname{Aut}(N)$ generate the same cyclic subgroup, and let $f_{a}, f_{b} \in \operatorname{Hom}\left(C_{n}, \operatorname{Aut}(N)\right)$ be the maps from 5(b). Show that $C_{n} \ltimes_{f_{a}} N \simeq C_{n} \ltimes_{f_{b}} N$
RMK From (b),(c) we conclude and conclude that semidirect products $C_{n} \ltimes N$ are determined by conjugacy classes of subgroups of $\operatorname{Aut}(N)$ which are cyclic of order dividing n.

Supplementary problems

A. We show that $(\mathbb{Z} / p \mathbb{Z})^{\times} \simeq C_{p-1}$ so that $\operatorname{Aut}\left(C_{p}\right) \simeq C_{p-1}$.
(a) Let F be a field. Show that F^{\times}has at most d elements of order dividing d (hint: a polynomial of degree d over a field has at most d roots).
(b) Let $H<F^{\times}$be a finite group. Show that H is cyclic.
(c) Show that $\operatorname{Aut}\left(C_{p}\right) \simeq C_{p-1}$.

Solving the following problem involves many parts of the course.
B. Let G be a group of order 8 .
(a) Suppose G is commutative. Show that G is isomorphic to one of $C_{8}, C_{4} \times C_{2}, C_{2} \times C_{2} \times C_{2}$.
(b) Suppose G is non-commutative. Show that there is $a \in G$ of order 4 and let $H=\langle a\rangle$.
(c) Show that $a \notin Z(G)$ but $a^{2} \in Z(G)$.
(d) Suppose there is $b \in G-H$ of order 2 . Show that $G \simeq D_{8}$ (hint: $b a b^{-1} \in\left\{a, a^{3}\right\}$ but can't be a).
(e) Let $b \in G-H$ have order 4. Show that $b a b^{-1}=a^{3}$ and that $a^{2}=b^{2}=(a b)^{2}$.
(f) Setting $c=a b,-1=a^{2}$ and $-g=(-1) g$ show that $G=\{ \pm 1, \pm a, \pm b, \pm c\}$ with the multiplication rule $a b=c, b a=-c, b c=a, c b=-a, c a=b, a c=-b$.
(g) Show that the set in (f) with the indicated operation is indeed a group.

DEF The group of $(\mathrm{f}),(\mathrm{g})$ is called the quaternions and indicated by Q.
C. Let G be a group (especially infinite).

DEF Let X be a set. A chain $\mathcal{C} \subset P(X)$ is a set of subsets of X such that if $A, B \in \mathcal{C}$ then either $A \subset B$ or $B \subset A$.
(a) Show that if \mathcal{C} is a chain then for every finite subset $\left\{A_{i}\right\}_{i=1}^{n} \subset \mathcal{C}$ there is $B \in \mathcal{C}$ such that $A_{i} \subset B$ for all i.
(b) Suppose \mathcal{C} is a non-empty chain of subgroups of a group G. Show that the union $\cup \mathcal{C}$ is a subgroup of G containing all $A \in c C$.
(c) Suppose \mathcal{C} is a chain of p-subgroups of G. Show that $\cup \mathcal{C}$ is a p-group as well.
(*d) Use Zorn's Lemma to show that every group has maximal p-subgroups (p-subgroups which are not properly contained in other p-subgrounps), in fact that every p-subgroup is contained in a maximal one.
RMK When G is infinite, it does not follow that these maximal subgroups are all conjugate.

