
Lior Silberman’s Math 322: Problem Set 8 (due 9/11/2017)

On group actions and homomorphisms

1. Let the group G act on the set X .
DEF The kernel of the action is the normal subgroup K = {g ∈ G | ∀x ∈ X : g · x = x}.
PRAC K is the kernel of the associated homomorphism G→ SX , hence KCG indeed.
(a) Construct an action of G/K on X “induced” from the action of G.
DEF An action is called faithful its the kernel is trivial.
(b) Show that the action of G/K on X is faithful.
SUPP Show that this realizes G/K as a subgroup of SX .
(c) Suppose G acts non-trivially on a set of size n. Show that G has a proper normal subgroup

of index at most n!.
(*d) Show that an infinite simple group has no proper subgroups of finite index.

*2. Let G be a group of finite order n, and let p be the smallest prime divisor of n. Let M < G be
a subgroup of index p. Show that M is normal.
RMK In particular, this applies when G is a finite p-group.

Automorphisms of groups and semidirect products
Recall that Aut(H) is the group of isomorphisms H→ H.

*3. Let H,N be groups, and let ϕ ∈ Hom(H,Aut(N)) be an action of H on N by automorphisms.
We write ϕh rather than ϕ(h) for the automorphism given by h ∈ H, so result of h acting
on n (the result of applying the automorphism ϕ(h) to n) will be written ϕh(n). That ϕ is a
homomorphism is the statement that ϕh ◦ϕh′ = ϕhh′ .
DEF The (external) semidirect product of H and N along ϕ is the operation

(h1,n1) · (h2,n2) =
(

h1h2,
(

ϕh−1
2
(n1)

)
n2

)
on the set H×N. We denote this group H nϕ N.

PRAC Verify that when ϕ is the trivial homomorphism (ϕh = id for all h ∈ H), this is the
ordinary direct product.

(a) Show that the semidirect product is, indeed, a group.
(b) Show that fH : H → H nϕ N given by f (h) = (h,e), fN : N → H nϕ N given by f (n) =

(e,n) and π : H nϕ N→ H given by π (h,n) = h are group homomorphisms.
(c) Show that H̃ = fH(H) and Ñ = fN(N) are subgroups with Ñ normal. Show that for h̃ =

(h,e) and ñ = (e,n) we have h̃ñh̃−1 = ˜(ϕ(h))(n).
(d) Show that H nϕ N is the internal semidirect product of its subroups H̃, Ñ.
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4. (Concrete 3(b),(c),(d)) Let H = R× act on N = R by multiplication (so ϕh(n) = hn). Show

H nϕ N is isomorphic to the subgroup P =

{(
h n

1

)
| h ∈ R×,n ∈ R

}
of GL2(R).

SUPP Do the same with H = (Z/nZ)×, N = Z/nZ. Now P is a finite group.

SUPP Same with H =GLd(R), N =Rd , P=

{(
h n

1

)
| h ∈ GLd(R), n ∈ Rd

}
<GLd+1(R).

5. (Cyclic groups)
(a) Let A be a group. Show that mapping f ∈Hom(Cn,A) to f ([1]n) gives a bijection between

Hom(Cn,A) and the set of a ∈ A of order dividing n.
(b) Write fa for the homomorphism such that f ([1]) = a. When A = Cn = (Z/nZ,+) show

that fa ◦ fb = fab (ab is multiplication mod n) and hence that Aut(Cn)' (Z/nZ)×.
RMK You’ve just done a fancy version of problem 4 of PS1

Extra Credit

6. The two parts complete problem 3. For these let ϕ ∈ Hom(H,Aut(N)).
(a) For α ∈ Aut(H) define ψ : H → Aut(N) by ψ = ϕ ◦α (that is ψh = ϕα(h)). Show that

F (h,n) =
(
α−1(h),n

)
gives an isomorphism F : H nϕ N→ H nψ N.

(b) For β ∈ Aut(N) define ψ : H → Aut(N) by ψh = β ◦ ϕh ◦ β−1 (this is conjugation in
Aut(N)!). Show that H nϕ N ' H nψ N.

(c) Let a,b∈Aut(N) generate the same cyclic subgroup, and let fa, fb ∈Hom(Cn,Aut(N)) be
the maps from 5(b). Show that Cn n fa N 'Cn n fb N

RMK From (b),(c) we conclude and conclude that semidirect products Cn nN are determined
by conjugacy classes of subgroups of Aut(N) which are cyclic of order dividing n.
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Supplementary problems

A. We show that (Z/pZ)× 'Cp−1 so that Aut(Cp)'Cp−1.
(a) Let F be a field. Show that F× has at most d elements of order dividing d (hint: a

polynomial of degree d over a field has at most d roots).
(b) Let H < F× be a finite group. Show that H is cyclic.
(c) Show that Aut(Cp)'Cp−1.

Solving the following problem involves many parts of the course.
B. Let G be a group of order 8.

(a) Suppose G is commutative. Show that G is isomorphic to one of C8, C4×C2, C2×C2×C2.
(b) Suppose G is non-commutative. Show that there is a ∈ G of order 4 and let H = 〈a〉.
(c) Show that a /∈ Z(G) but a2 ∈ Z(G).
(d) Suppose there is b ∈G−H of order 2. Show that G'D8 (hint: bab−1 ∈

{
a,a3} but can’t

be a).
(e) Let b ∈ G−H have order 4. Show that bab−1 = a3and that a2 = b2 = (ab)2.
(f) Setting c = ab, −1 = a2 and −g = (−1)g show that G = {±1,±a,±b,±c}with the mul-

tiplication rule ab = c, ba =−c, bc = a, cb =−a, ca = b, ac =−b.
(g) Show that the set in (f) with the indicated operation is indeed a group.
DEF The group of (f),(g) is called the quaternions and indicated by Q.

C. Let G be a group (especially infinite).
DEF Let X be a set. A chain C ⊂ P(X) is a set of subsets of X such that if A,B ∈ C then either

A⊂ B or B⊂ A.
(a) Show that if C is a chain then for every finite subset {Ai}n

i=1 ⊂ C there is B ∈ C such that
Ai ⊂ B for all i.

(b) Suppose C is a non-empty chain of subgroups of a group G. Show that the union
⋃
C is a

subgroup of G containing all A ∈ cC.
(c) Suppose C is a chain of p-subgroups of G. Show that

⋃
C is a p-group as well.

(*d) Use Zorn’s Lemma to show that every group has maximal p-subgroups (p-subgroups
which are not properly contained in other p-subgrounps), in fact that every p-subgroup is
contained in a maximal one.

RMK When G is infinite, it does not follow that these maximal subgroups are all conjugate.
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