Lior Silberman's Math 322: Problem Set 8 (due 9/11/2017)

On group actions and homomorphisms

1. Let the group *G* act on the set *X*.

DEF The *kernel* of the action is the normal subgroup $K = \{g \in G \mid \forall x \in X : g \cdot x = x\}$.

PRAC *K* is the kernel of the associated homomorphism $G \rightarrow S_X$, hence $K \triangleleft G$ indeed.

- (a) Construct an action of G/K on X "induced" from the action of G.
- DEF An action is called *faithful* its the kernel is trivial.

(b) Show that the action of G/K on X is faithful.

- SUPP Show that this realizes G/K as a subgroup of S_X .
- (c) Suppose *G* acts non-trivially on a set of size *n*. Show that *G* has a proper normal subgroup of index at most *n*!.
- (*d) Show that an infinite simple group has no proper subgroups of finite index.
- *2. Let G be a group of finite order n, and let p be the smallest prime divisor of n. Let M < G be a subgroup of index p. Show that M is normal.

RMK In particular, this applies when *G* is a finite *p*-group.

Automorphisms of groups and semidirect products

Recall that Aut(H) is the group of isomorphisms $H \to H$.

*3. Let H, N be groups, and let $\varphi \in \text{Hom}(H, \text{Aut}(N))$ be an action of H on N by automorphisms. We write φ_h rather than $\varphi(h)$ for the automorphism given by $h \in H$, so result of h acting on n (the result of applying the automorphism $\varphi(h)$ to n) will be written $\varphi_h(n)$. That φ is a homomorphism is the statement that $\varphi_h \circ \varphi_{h'} = \varphi_{hh'}$.

DEF The (external) semidirect product of H and N along φ is the operation

$$(h_1, n_1) \cdot (h_2, n_2) = \left(h_1 h_2, \left(\varphi_{h_2^{-1}}(n_1)\right) n_2\right)$$

on the set $H \times N$. We denote this group $H \ltimes_{\varphi} N$.

- PRAC Verify that when φ is the trivial homomorphism ($\varphi_h = \text{id for all } h \in H$), this is the ordinary direct product.
- (a) Show that the semidirect product is, indeed, a group.
- (b) Show that $f_H: H \to H \ltimes_{\varphi} N$ given by $f(h) = (h, e), f_N: N \to H \ltimes_{\varphi} N$ given by f(n) = (e, n) and $\pi: H \ltimes_{\varphi} N \to H$ given by $\pi(h, n) = h$ are group homomorphisms.
- (c) Show that $\tilde{H} = f_H(H)$ and $\tilde{N} = f_N(N)$ are subgroups with \tilde{N} normal. Show that for $\tilde{h} = (h, e)$ and $\tilde{n} = (e, n)$ we have $\tilde{h}\tilde{n}\tilde{h}^{-1} = (\widetilde{\varphi(h)})(n)$.
- (d) Show that $H \ltimes_{\varphi} N$ is the internal semidirect product of its subroups \tilde{H}, \tilde{N} .

- 4. (Concrete 3(b),(c),(d)) Let $H = \mathbb{R}^{\times}$ act on $N = \mathbb{R}$ by multiplication (so $\varphi_h(n) = hn$). Show $H \ltimes_{\varphi} N$ is isomorphic to the subgroup $P = \left\{ \begin{pmatrix} h & n \\ 1 \end{pmatrix} \mid h \in \mathbb{R}^{\times}, n \in \mathbb{R} \right\}$ of $GL_2(\mathbb{R})$. SUPP Do the same with $H = (\mathbb{Z}/n\mathbb{Z})^{\times}, N = \mathbb{Z}/n\mathbb{Z}$. Now P is a finite group. SUPP Same with $H = GL_d(\mathbb{R}), N = \mathbb{R}^d, P = \left\{ \begin{pmatrix} h & n \\ 1 \end{pmatrix} \mid h \in GL_d(\mathbb{R}), \underline{n} \in \mathbb{R}^d \right\} < GL_{d+1}(\mathbb{R})$.
- 5. (Cyclic groups)
 - (a) Let *A* be a group. Show that mapping $f \in \text{Hom}(C_n, A)$ to $f([1]_n)$ gives a bijection between $\text{Hom}(C_n, A)$ and the set of $a \in A$ of order dividing *n*.
 - (b) Write f_a for the homomorphism such that f ([1]) = a. When A = C_n = (ℤ/nℤ, +) show that f_a ∘ f_b = f_{ab} (ab is multiplication mod n) and hence that Aut(C_n) ≃ (ℤ/nℤ)[×].
 RMK You've just done a fancy version of problem 4 of PS1

Extra Credit

- 6. The two parts complete problem 3. For these let $\varphi \in \text{Hom}(H, \text{Aut}(N))$.
 - (a) For $\alpha \in \operatorname{Aut}(H)$ define $\psi \colon H \to \operatorname{Aut}(N)$ by $\psi = \varphi \circ \alpha$ (that is $\psi_h = \varphi_{\alpha(h)}$). Show that $F(h,n) = (\alpha^{-1}(h), n)$ gives an isomorphism $F \colon H \ltimes_{\varphi} N \to H \ltimes_{\psi} N$.
 - (b) For $\beta \in \operatorname{Aut}(N)$ define $\psi \colon H \to \operatorname{Aut}(N)$ by $\psi_h = \beta \circ \varphi_h \circ \beta^{-1}$ (this is conjugation in $\operatorname{Aut}(N)$!). Show that $H \ltimes_{\varphi} N \simeq H \ltimes_{\psi} N$.
 - (c) Let $a, b \in Aut(N)$ generate the same cyclic subgroup, and let $f_a, f_b \in Hom(C_n, Aut(N))$ be the maps from 5(b). Show that $C_n \ltimes_{f_a} N \simeq C_n \ltimes_{f_b} N$
 - RMK From (b),(c) we conclude and conclude that semidirect products $C_n \ltimes N$ are determined by *conjugacy classes of subgroups* of Aut(N) which are cyclic of order dividing n.

Supplementary problems

- A. We show that $(\mathbb{Z}/p\mathbb{Z})^{\times} \simeq C_{p-1}$ so that $\operatorname{Aut}(C_p) \simeq C_{p-1}$.
 - (a) Let F be a field. Show that F^{\times} has at most d elements of order dividing d (hint: a polynomial of degree d over a field has at most d roots).
 - (b) Let $H < F^{\times}$ be a finite group. Show that *H* is cyclic.
 - (c) Show that $\operatorname{Aut}(C_p) \simeq C_{p-1}$.

Solving the following problem involves many parts of the course.

- B. Let G be a group of order 8.
 - (a) Suppose *G* is commutative. Show that *G* is isomorphic to one of C_8 , $C_4 \times C_2$, $C_2 \times C_2 \times C_2$.
 - (b) Suppose *G* is non-commutative. Show that there is $a \in G$ of order 4 and let $H = \langle a \rangle$.
 - (c) Show that $a \notin Z(G)$ but $a^2 \in Z(G)$.
 - (d) Suppose there is $b \in G H$ of order 2. Show that $G \simeq D_8$ (hint: $bab^{-1} \in \{a, a^3\}$ but can't be a).
 - (e) Let $b \in G H$ have order 4. Show that $bab^{-1} = a^3$ and that $a^2 = b^2 = (ab)^2$.
 - (f) Setting c = ab, $-1 = a^2$ and -g = (-1)g show that $G = \{\pm 1, \pm a, \pm b, \pm c\}$ with the multiplication rule ab = c, ba = -c, bc = a, cb = -a, ca = b, ac = -b.
 - (g) Show that the set in (f) with the indicated operation is indeed a group.
 - DEF The group of (f),(g) is called the *quaternions* and indicated by Q.
- C. Let *G* be a group (especially infinite).
 - DEF Let X be a set. A *chain* $C \subset P(X)$ is a set of subsets of X such that if $A, B \in C$ then either $A \subset B$ or $B \subset A$.
 - (a) Show that if C is a chain then for every finite subset $\{A_i\}_{i=1}^n \subset C$ there is $B \in C$ such that $A_i \subset B$ for all *i*.
 - (b) Suppose C is a non-empty chain of subgroups of a group G. Show that the union $\bigcup C$ is a subgroup of G containing all $A \in cC$.
 - (c) Suppose C is a chain of p-subgroups of G. Show that $\bigcup C$ is a p-group as well.
 - (*d) Use Zorn's Lemma to show that every group has maximal *p*-subgroups (*p*-subgroups which are not properly contained in other *p*-subgroups), in fact that every *p*-subgroup is contained in a maximal one.
 - RMK When G is infinite, it does not follow that these maximal subgroups are all conjugate.