Math 322: Problem Set 7 (due 2/11/2015)

Practice problem

- P1. Let G commutative group where every element has order dividing p.
 - (a) Endow G with the structure of a vector space over \mathbb{F}_p .
 - (b) Show that $\dim_{\mathbb{F}_p} G = k$ iff $\#G = p^k$ iff $G \simeq (C_p)^k$.
 - (c) Show that for any $X \subset G$, we have $\langle X \rangle = \operatorname{Span}_{\mathbb{F}_p} X$.
 - (d) Show that any generating set of \mathbb{C}_2^k consists of at least $k = \log_2(\#C_2^k)$ elements.

General theory

Fix a group G.

- *1. Suppose G is finite and let H be a proper subgroup. Show that the conjugates of H do not cover G (that is, there is some $g \in G$ which is not conjugate to an element of H).
- 2. (Correspondence Theorem) Let $f \in \text{Hom}(G,H)$, and let K = Ker(f).
 - (a) Show that the map $M \mapsto f(M)$ gives a bijection between the set of subgroups of G containing K and the set of subgroups of Im(f) = f(G).
 - (b) Show that the bijection respects inclusions, indices and normality (if $K < M_1, M_2 < G$ then $M_1 < M_2$ iff $f(M_1) < f(M_2)$, in which case $[M_2 : M_1] = [f(M_2) : f(M_1)]$, and $M_1 \lhd M_2$ iff $f(M_1) \lhd f(M_2)$).
- 3. Let $X, Y \subset G$ and suppose that $K = \langle X \rangle$ is normal in G. Let $q: G \to G/K$ be the quotient map. Show that $G = \langle X \cup Y \rangle$ iff $G/K = \langle q(Y) \rangle$.

p-groups

4. Let $\mathbb{Z}\left[\frac{1}{p}\right] = \left\{\frac{a}{p^k} \in \mathbb{Q} \mid a \in \mathbb{Z}, k \ge 0\right\} < (\mathbb{Q}, +)$, and note that $\mathbb{Z} \lhd \mathbb{Z}\left[\frac{1}{p}\right]$ (why?).

PRAC Verify that $\mathbb{Z}\left[\frac{1}{p}\right]$ is indeed a subgroup.

- (a) Show that $G = \mathbb{Z}\left[\frac{1}{p}\right]/\mathbb{Z}$ is a *p*-group.
- (b) Show that for every $x \in G$ there is $y \in G$ with $y^p = x$ (warning: what does y^p mean?)
- SUPP Show that every proper subgroup of G is finite and cyclic. Conversely, for every k there is a unique subgroup isomorphic to p^k .
- *5. Let *G* be a finite *p*-group, and let $H \triangleleft G$. Show that if *H* is non-trivial then so is $H \cap Z(G)$.

Extra credit

- *6. If $|G| = p^n$, show for each $0 \le k \le n$ that G contains a normal subgroup of order p^k .
- *7. For *G* let $G^p = \langle \{g^p \mid g \in G\} \rangle$ be the subgruop generated by the *p*th powers.
 - (a) Show $G^p \triangleleft G$ and that every element of G/G^p has order dividing p.
 - (b) Suppose G is a finite commutative p-group. Show that X ⊂ G generates G iff its image in G/G^p generates that group. In particular, a minimal generating set has cardinality dim_{F_p} G/G^p = log_p [G : G^p].
- RMK We will see later that in any finite *p*-group, *X* generates *G* iff its image generates $G/G'G^p$ where *G'* is the derived (commutator) subgroup.

(hint for 1: count elements) (hint for 5: adapt a proof from class)

Supplement: Group actions

- A. Fix an action \cdot of the group G on the set X.
 - (a) Let $Y \subset X$ be *G*-invariant in that gY = Y. Show that the *restriction* $\cdot |_{G \times Y}$ defines an action of *G* on *Y*.
 - (b) Let H < G. Show that the *restriction* $\cdot |_{H \times X}$ defines an action of H on X.
 - (c) Show that every *G*-orbit in *X* is a union of *H*-orbits.
 - (d) Show that every *G*-orbit is the union of at most [G:H] *H*-orbits.
- B. Let the finite group *G* act on the finite set *X*.
 - DEF For $g \in G$ its set of fixed points is $Fix(g) = \{x \in X \mid g \cdot x = x\}$. The stabilizer of $x \in X$ is $Stab_G(x) = \{g \in G \mid g \cdot x = x\}$.
 - (a) Enumerating the elements of the set $\{(g,x) \in G \times X \mid g \cdot x = x\}$ in two different ways, show that

$$\sum_{g \in G} \# \operatorname{Fix}(g) = \sum_{x \in X} \# \operatorname{Stab}_G(x).$$

(b) Using the conjugacy of point stabilizers in an orbit, deduce that

$$\sum_{g \in G} \# \operatorname{Fix}(g) = \sum_{\mathcal{O} \in G \setminus X} \# G$$

and hence the *Lemma that is not Burnside's:* the number of orbits is exactly the average number of fixed points,

$$#G \setminus X = \frac{1}{\#G} \sum_{g \in G} \# \operatorname{Fix}(g).$$

(c) Example: suppose we'd like to colour each vertex of a cube by one of four different colours, with two colourings considered equivalent if they are obtained from each other by a rotation of the cube. How many colourings are there, up to equivalence?