Math 322: Problem Set 7 (due 2/11/2015)

Practice problem

P1. Let G commutative group where every element has order dividing p.
(a) Endow G with the structure of a vector space over \mathbb{F}_{p}.
(b) Show that $\operatorname{dim}_{\mathbb{F}_{p}} G=k$ iff $\# G=p^{k}$ iff $G \simeq\left(C_{p}\right)^{k}$.
(c) Show that for any $X \subset G$, we have $\langle X\rangle=\operatorname{Span}_{\mathbb{F}_{p}} X$.
(d) Show that any generating set of \mathbb{C}_{2}^{k} consists of at least $k=\log _{2}\left(\# C_{2}^{k}\right)$ elements.

General theory

Fix a group G.
*1. Suppose G is finite and let H be a proper subgroup. Show that the conjugates of H do not cover G (that is, there is some $g \in G$ which is not conjugate to an element of H).
2. (Correspondence Theorem) Let $f \in \operatorname{Hom}(G, H)$, and let $K=\operatorname{Ker}(f)$.
(a) Show that the map $M \mapsto f(M)$ gives a bijection between the set of subgroups of G containing K and the set of subgroups of $\operatorname{Im}(f)=f(G)$.
(b) Show that the bijection respects inclusions, indices and normality (if $K<M_{1}, M_{2}<G$ then $M_{1}<M_{2}$ iff $f\left(M_{1}\right)<f\left(M_{2}\right)$, in which case $\left[M_{2}: M_{1}\right]=\left[f\left(M_{2}\right): f\left(M_{1}\right)\right]$, and $M_{1} \triangleleft M_{2}$ iff $\left.f\left(M_{1}\right) \triangleleft f\left(M_{2}\right)\right)$.
3. Let $X, Y \subset G$ and suppose that $K=\langle X\rangle$ is normal in G. Let $q: G \rightarrow G / K$ be the quotient map. Show that $G=\langle X \cup Y\rangle$ iff $G / K=\langle q(Y)\rangle$.

p-groups

4. Let $\mathbb{Z}\left[\frac{1}{p}\right]=\left\{\left.\frac{a}{p^{k}} \in \mathbb{Q} \right\rvert\, a \in \mathbb{Z}, k \geq 0\right\}<(\mathbb{Q},+)$, and note that $\mathbb{Z} \triangleleft \mathbb{Z}\left[\frac{1}{p}\right]$ (why?).

PRAC Verify that $\mathbb{Z}\left[\frac{1}{p}\right]$ is indeed a subgroup.
(a) Show that $G=\mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}$ is a p-group.
(b) Show that for every $x \in G$ there is $y \in G$ with $y^{p}=x$ (warning: what does y^{p} mean?)

SUPP Show that every proper subgroup of G is finite and cyclic. Conversely, for every k there is a unique subgroup isomorphic to p^{k}.
*5. Let G be a finite p-group, and let $H \triangleleft G$. Show that if H is non-trivial then so is $H \cap Z(G)$.

Extra credit

*6. If $|G|=p^{n}$, show for each $0 \leq k \leq n$ that G contains a normal subgroup of order p^{k}.
*7. For G let $G^{p}=\left\langle\left\{g^{p} \mid g \in G\right\}\right\rangle$ be the subgruop generated by the p th powers.
(a) Show $G^{p} \triangleleft G$ and that every element of G / G^{p} has order dividing p.
(b) Suppose G is a finite commutative p-group. Show that $X \subset G$ generates G iff its image in G / G^{p} generates that group. In particular, a minimal generating set has cardinality $\operatorname{dim}_{\mathbb{F}_{p}} G / G^{p}=\log _{p}\left[G: G^{p}\right]$.

RMK We will see later that in any finite p-group, X generates G iff its image generates $G / G^{\prime} G^{p}$ where G^{\prime} is the derived (commutator) subgroup.
(hint for 1: count elements)
(hint for 5: adapt a proof from class)

Supplement: Group actions

A. Fix an action - of the group G on the set X.
(a) Let $Y \subset X$ be G-invariant in that $g Y=Y$. Show that the restriction $\cdot \upharpoonright_{G \times Y}$ defines an action of G on Y.
(b) Let $H<G$. Show that the restriction $\cdot \upharpoonright_{H \times X}$ defines an action of H on X.
(c) Show that every G-orbit in X is a union of H-orbits.
(d) Show that every G-orbit is the union of at most $[G: H] H$-orbits.
B. Let the finite group G act on the finite set X.

DEF For $g \in G$ its set of fixed points is $\operatorname{Fix}(g)=\{x \in X \mid g \cdot x=x\}$. The stabilizer of $x \in X$ is $\operatorname{Stab}_{G}(x)=\{g \in G \mid g \cdot x=x\}$.
(a) Enumerating the elements of the set $\{(g, x) \in G \times X \mid g \cdot x=x\}$ in two different ways, show that

$$
\sum_{g \in G} \# \operatorname{Fix}(g)=\sum_{x \in X} \# \operatorname{Stab}_{G}(x)
$$

(b) Using the conjugacy of point stabilizers in an orbit, deduce that

$$
\sum_{g \in G} \# \operatorname{Fix}(g)=\sum_{\mathcal{O} \in G \backslash X} \# G
$$

and hence the Lemma that is not Burnside's: the number of orbits is exactly the average number of fixed points,

$$
\# G \backslash X=\frac{1}{\# G} \sum_{g \in G} \# \operatorname{Fix}(g)
$$

(c) Example: suppose we'd like to colour each vertex of a cube by one of four different colours, with two colourings considered equivalent if they are obtained from each other by a rotation of the cube. How many colourings are there, up to equivalence?

