Lior Silberman's Math 322: Problem Set 6 (due 26/10/2017)

Practice problems

- P1. Let G be a group and let X be a set of size at least 2. Fix $x_0 \in X$ and for $g \in G, x \in X$ set $g \cdot x = x_0$.
 - (a) Show that this operation satisfies $(gh) \cdot x = g \cdot (h \cdot x)$ for all $g, h \in G, x \in X$.
 - (b) This is not a group action. Why?
- P2. Let G act on X. Say that $A \subset X$ is G-invariant if for every $g \in G$, $a \in A$ we have $g \cdot a \in A$.
 - (a) Show that A is G-invariant iff $g \cdot A = A$ ($g \cdot A$ in the sense of problem 4(a)).
 - (b) Suppose *A* is *G*-invariant. Show that the restriction of the action to *A* (formally, the binary operation $\cdot \upharpoonright_{G \times A}$) is an action of *G* on *A*.

Simplicity of A_n

- 1. Let $V = \{id, (12)(34), (13)(24), (14)(23)\}$. Show that $V \triangleleft S_4$, so that S_4 is not simple.
- 2. (The normal subgroups of S_n) Let $N \triangleleft S_n$ with $n \ge 5$.
 - (a) Let G be a group and let $H \triangleleft G$ be a normal subgroup isomorphic to C_2 . Show that $H \triangleleft Z(G)$.
 - (b) Suppose that $N \cap A_n \neq \{id\}$. Show that $N \supset A_n$ and conclude that $N = A_n$ or $N = S_n$.
 - (c) Suppose that $N \cap A_n = \{id\}$. Show that N is isomorphic to a subgroup of C_2 .
 - (d) Show that if $n \ge 3$ then $Z(S_n) = \{id\}$, and conclude that in case (c) we must have N = id.
- 3. Let *X* be an infinite set.
 - (a) Show that $S_X^{\text{fin}} = \{ \sigma \in S_X \mid \text{supp}(\sigma) \text{ is finite} \}$ is a subgroup of S_X .
 - PRAC For finite $F \subset X$ there is a natural inclusion $S_F \hookrightarrow S_X$, which is a group homomorphism and an isomorphism onto its image. Let $\operatorname{sgn}_F : S_F \to \{\pm 1\}$ be the sign character.
 - DEF For $\sigma \in S_X^{\text{fin}}$ define $\text{sgn}(\sigma) = \text{sgn}_F(\sigma)$ for any finite F such that $\sigma \in S_F$.
 - (c) Show that $sgn(\sigma)$ is well-defined (independent of F) and a group hom $S_X^{fin} \to \{\pm 1\}$.
 - (*d) The *infinite alternating group* A_X is kernel of this homomorphism. Show that A_X is simple.

Group actions

- 4. Let the group *G* act on the set *X*.
 - (a) For $g \in G$ and $A \in P(X)$ set $g \cdot A = \{g \cdot a \mid a \in A\} = \{x \in X \mid \exists a \in A : x = g \cdot a\}$. Show that this defines an action of G on P(X).
 - (b) In PS2 we endowed P(X) with a group structure. Show that the action of (a) is by *automorphisms*: that the map $A \mapsto g \cdot A$ is a group homomorphism $(P(X), \Delta) \to (P(X), \Delta)$.
 - (c) Let Y be another set. For $f: X \to Y$ set $(g \cdot f)(x) = f(g^{-1} \cdot x)$. Show that this defines an action of G on Y^X , the set of functions from X to Y.
 - (*d) Suppose that $Y = \mathbb{R}$ (or any field), so that \mathbb{R}^X has the structure of a vector space over \mathbb{R} . Show that the action of (c) is by *linear maps*.

- 5. (Some stabilizers) The action of S_X on X induces an action on P(X) as in problem 4(a). Suppose that X is finite, #X = n.
 - (a) Let $A, B \subset X$. Show there is $\sigma \in S_X$ such that $\sigma \cdot A = B$ iff #A = #B (we'll call $\binom{X}{k} = \{A \subset X \mid \#A = k\}$ an *orbit* of the action of S_X on P(X)).
 - SUPP When X is infinite, $\binom{X}{\kappa}$ are orbits if $\kappa < |X|$, but there are multiple orbits on $\binom{X}{|X|}$, parametrized by the cardinality of the complement.
 - (b) Let $A \subset X$. Show that $\operatorname{Stab}_{S_X}(A) \stackrel{\text{def}}{=} \{ \sigma \in S_X \mid \sigma \cdot A = A \} \simeq S_A \times S_{X-A}$ (we call $\operatorname{Stab}_{S_X}(A)$ the "stabilizer" of A).
 - (c) Compute the index $[S_X : \operatorname{Stab}_{S_X}(A)]$. Now read Proposition 176 in the notes and use it to show that $\#\binom{X}{k} = \frac{n!}{k!(n-k)!}$.

Supplementary problem: Conjugation

- A. Let *G* be a finite group.
 - (a) Suppose all elements of G are conjugate. Show that $G = \{e\}$.
 - (b) Suppose G has exactly two conjugacy classes. Show that $G \simeq C_2$.
 - (**c) Suppose G has exactly three conjugacy classes. Show that $G = \simeq C_3$ or $G \simeq S_3$.

RMK There exists an infinite group in which all non-identity elements are conjugate.

**B. Show that for each k there is N = N(k) such that every finite group with k conjugacy classes has order at most N.

(hint for 2(a)t: let $H = \{1, h\}$, let $g \in G$, and consider the element ghg^{-1})

(hint for 2(b): consider the index of N)

(hint for 2(c): restrict sgn: $S_n \to C_2$ to N)

(hint for 6(b): the number of conjugates of an element divides the order of the group)