Lior Silberman's Math 322: Problem Set 3 (due 28/9/2017)
 Practice problems

P1. (cf PS1 problem 1) Let κ be an r-cycle in S_{X}. Show
(a) $\kappa^{r}=\mathrm{id}$.
(b) For $m \in \mathbb{Z}, \kappa^{m}=$ id iff $r \mid m$.
(c) κ^{m} is determined by the class of $m \bmod r$, and distinct classes correspond to distinct powers of κ.

P2. Show that S_{n} contains $(n-1)!n$-cycles.
P3. [DF1.1.7] Let $G=[0,1)$ be the half-open interval, and for $x, y \in G$ define

$$
x * y= \begin{cases}x+y & \text { if } x+y<1 \\ x+y-1 & \text { if } x+y \geq 1\end{cases}
$$

(a) Show that $(G, *)$ is a commutative group. It is called " $\mathbb{R} \bmod \mathbb{Z}$ ".
(b) Give an alternative construction of G using the equivalence relation $x \equiv y(\mathbb{Z})$ if $x-y \in \mathbb{Z}$

The Symmetric Group

1. (Generation of the alternating group)
(a) Let β be an r-cycle. Show that $\beta \in A_{n}$ iff r is odd.
(b) Show that every element of A_{n} is a product of 3-cycles (hint: start with (12) (13) $\in A_{3}$ and $\left.(12)(34) \in A_{4}\right)$.
RMK You have shown "the subgroup of S_{n} generated by the 3-cycles is A_{n} ".
2. Call $\sigma, \tau \in S_{X}$ conjugate if there is $\rho \in S_{X}$ such that $\tau=\rho \sigma \rho^{-1}$ (cf. similarily of matrices).
(a) Show that " σ is conjugate to τ " is an equivalence relation.
(*b) Let β be an r-cycle. Show that $\rho \beta \rho^{-1}$ is also an r-cycle.
(c) Show that if $\sigma=\prod_{i=1}^{t} \beta_{i}$ is the cycle decomposition of σ, then $\rho \sigma \rho^{-1}=\prod_{i=1}^{t}\left(\rho \beta_{i} \rho^{-1}\right)$ is the cycle decomposition of $\rho \sigma \rho^{-1}$.
RMK We have shown: if σ is conjugate to τ then they have the same cycle structure: for each r they have the same number of r-cycles.
$\left({ }^{*} \mathrm{~d}\right)$ Suppose σ, τ have the same cycle structure. Show that they are conjugate.
3. A permutation matrix is an $n \times n$ matrix which is zero except for exactly one 1 in each row and column (example: the identity matrix). The Kroncker delta is defined by $\delta_{a, b}=\left\{\begin{array}{ll}1 & a=b \\ 0 & a \neq b\end{array}\right.$.
(a) Given $\sigma \in S_{n}$ let $P(\sigma)$ be the matrix with $(P(\sigma))_{i j}=\delta_{i, \sigma(j)}$. Show that P is a bijection between S_{n} and the set of permutation matrices of size n.
(b) Show that $P: S_{n} \rightarrow M_{n}(\mathbb{R})$ has $P(\sigma \tau)=P(\sigma) P(\tau)$.
(c) Show that the image of P consists of invertible matrices.

RMK In fact $\operatorname{det}(P(\sigma))=\operatorname{sgn}(\sigma)$.

Groups and homomorphisms

4. Let $*$ be an associative operation on a set G (that means $(x * y) * z=x *(y * z)$, and let $a \in G$. We make the rescursive definition $a^{1}=a, a^{n+1}=a^{n} * a$ for $n \geq 1$.
(a) Show by induction on m that if $n, m \geq 1$ then $a^{n} * a^{m}=a^{n+m}$ and $\left(a^{n}\right)^{m}=a^{n m}$.

SUPP If G is a group, set $a^{0}=e$ and $a^{-n}=\left(a^{-1}\right)^{n}$ and show that for all $n, m \in \mathbb{Z}$ we have $a^{n} * a^{m}=a^{n+m}$ and $\left(a^{n}\right)^{m}=a^{n m}$.

- From now on suppose G is a group, and use the previous result.
(c) [R1.31] Let m, n be relatively prime integers and suppose that $a^{m}=e$. Show that there is $b \in G$ such that $b^{n}=a$ (hint: Bezout's Theorem).
(d) Let $a \in G$ satisfy $a^{n}=e$ for some $n \neq 0$ and let $k \in \mathbb{Z}_{\geq 1}$ be minimal such that $a^{k}=e$. Show that $k \mid n$.
DEF We call k the order of a. We have shown that $a^{n}=e$ iff n is divisible by the order of a.

5. Let G be a group, and suppose that $f(x)=x^{-1}$ is a group homomorphism $G \rightarrow G$. Show that $x y=y x$ for all $x, y \in G$ (we call such G abelian $)$.
(hints overleaf)

Supplementary Problems I: Permutations

A. In this problem we will give an alternative proof of the cycle decomposition of permutations. Fix a set X (which may be infinite) and a permutation $\sigma \in S_{X}$.
(a) Define a relation \sim on X by $i \sim j \leftrightarrow \exists n \in \mathbb{Z}: \sigma^{n}(i)=j$. Show that this is an equivalence relation.
DEF We'll call the equivalence classes the orbits of σ on X.
(b) Let O be an orbit, and let $\kappa_{O}=\sigma \upharpoonright_{o}$ be the restriction of σ to O : the function $O \rightarrow X$ defined by $\kappa_{O}(i)=\sigma(i)$ if $i \in O$. Show that $\kappa_{O} \in S_{O}$ (note that you need to show that the range of κ_{O} is in $O!$)
(c) Choose $i \in O$ and suppose O is finite, of size r. Show that κ_{O} is an r-cycle: that mapping $[j]_{r} \mapsto \kappa_{O}^{j}(i)$ gives a well-defined bijection $\mathbb{Z} / r \mathbb{Z} \rightarrow O$ (equivalently, that if we set $i_{0}=i$, $i_{1}=\sigma(i), i_{j+1}=\sigma\left(i_{j}\right)$ and so on we get $\left.i_{r}=i_{0}\right)$.
RMK Note that $r=1$ is possible now - every fixed point is its own 1-cycle.
(d) Choose $i \in O$ and suppose O is infinite. Show that κ_{O} is an infinite cycle: that mapping $j \mapsto \kappa_{O}^{j}(i)$ gives bijection $\mathbb{Z} \rightarrow O$.
RMK We'd like to say

$$
\sigma=\prod_{O \in X / \sim} \kappa_{O}
$$

but there very well may be infinitely many cycles if X is infinite. We can instead interpret this as σ being the union of the κ_{O} : for every $i \in X$ let O be the orbit of i, and then $\sigma(i)=\kappa_{O}(i)$.
B. In this problem we give an alternative approach to the sign character.
(a) For $\sigma \in S_{n}$ set $t(\sigma)=\#\{1 \leq i<j \leq n \mid \sigma(i)>\sigma(j)\}$ and let $s(\sigma)=(-1)^{t(\sigma)}=\left\{\begin{array}{ll}1 & t(\sigma) \text { even } \\ 0 & t(\sigma) \text { odd }\end{array}\right.$. Show that for an r-cycle κ we have $s(\kappa)=(-1)^{r-1}$.
(b) Let $\tau \in S_{n}$ be a transposition. Show that $t(\tau \sigma)-t(\sigma)$ is odd, and conclude that $s(\tau \sigma)=$ $s(\tau) s(\sigma)$.
(c) Show that $s: S_{n} \rightarrow\{ \pm 1\}$ is a group homomorphism.
(d) Show that $s(\sigma)=\operatorname{sgn}(\sigma)$ for all $\sigma \in S_{n}$.

Supplementary Problems II: Automorphisms

C. (The automorphism group) Let G be a group.
(a) An isomorphism $f: G \rightarrow G$ is called an automorphism of G. Show that the set $\operatorname{Aut}(G)$ of all automorphisms of G is a group under composition.
DEF Fix $a \in G$. For $g \in G$ set $\gamma_{a}(g)=a g a^{-1}$. This is called "conjugation by a ".
(b) Show that $\gamma_{a} \in \operatorname{Hom}(G, G)$.
(*c) Show that $\gamma_{a} \in \operatorname{Aut}(G)$ and that the map $a \mapsto \gamma_{a}$ is a group homomorphism $G \rightarrow \operatorname{Aut}(G)$.
DEF The image of this map is called the group of inner automorphisms and is denoted $\operatorname{Inn}(G)$.
D. Let F be a field. A map $f: F \rightarrow F$ is an automorphism if it is a bijection and it respects addition and multiplication.
(a) Verify that $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field.
(b) Show that $a+b \sqrt{2} \mapsto a-b \sqrt{2}$ is an automorphism of this field.
(c) Show that complex conjugation is an automorphism of the field of complex numbers.

RMK \mathbb{C} has many other automorphisms, while Supplementary Problem F to PS1 shows that $\operatorname{Aut}(\mathbb{R})=\{\mathrm{id}\}$.

Hint

(hint to 2 b : start by finding the fixed points of $\rho \sigma \rho^{-1}$)

