Lior Silberman's Math 322: Problem Set 2, due 21/9/2017

Practice and supplementary problems, and any problems specifically marked "OPT" (optional), "SUPP" (supplementary) or "PRAC" (practice) are *not for submission*. It is possible that the grader will not mark all problems.

Number Theory

- 1. (The Chinese Remainder Theorem)
 - (a) Let p be an odd prime. Show that the equation $x^2 = [1]$ has exactly two solutions in $\mathbb{Z}/p\mathbb{Z}$ (aside: what about p = 2?)
 - (b) We will find all solutions to the congruence $x^2 \equiv 1 (91)$.
 - (i) Find a "basis" a, b such that $a \equiv 1$ (7), $a \equiv 0$ (13) and $b \equiv 0$ (7), $b \equiv 1$ (13).
 - (ii) Solve the congruence mod 7 and mod 13.
 - (iii) Find all solutions mod 91.

Permutations

- 2. On the set $\mathbb{Z}/12\mathbb{Z}$ consider the maps $\sigma(a) = a + [4]$ and $\tau(a) = [5]a$ (so $\sigma([2]) = [6]$ and $\tau([2]) = [10]$)
 - DEF $(f \circ g)(x) = f(g(x))$ is composition of functions.
 - (a) Find maps σ^{-1} , τ^{-1} such that $\sigma \circ \sigma^{-1} = \sigma^{-1} \circ \sigma = \tau \circ \tau^{-1} = \tau^{-1} \circ \tau = \mathrm{id}$.
 - (b) Compute $\sigma \circ \tau, \tau \circ \sigma, \sigma^{-1}\tau$.
 - (c) For each $a \in \mathbb{Z}/12\mathbb{Z}$ compute $a, \sigma(a), \sigma(\sigma(a))$ and so on until you obtain a again. How many distinct cycles arise? List them.

RMK The relation "a,b are in the same cycle" is an equivalence relation.

- SUPP [R1.29] On $\mathbb{Z}/11\mathbb{Z}$ let $f(x) = 4x^2 3x^7$. Show that f is a permutation and find its cycle structure and its inverse.
- 3. Let *X* be a set, $i \in X$. Say $\sigma \in S_X$ fixes *i* if $\sigma(i) = i$, and let $P_i = \operatorname{Stab}_{S_X}(i) = \{\sigma \in S_X \mid \sigma(i) = i\}$ be the set of such permutations.
 - (a) Show that P_i is non-empty and closed under composition and under inverses (i.e. that if $\sigma, \tau \in P_i$ then $\sigma \circ \tau$ and $\sigma^{-1} \in P_i$).

RMK You've shown that P_i is a *subgroup* of S_X .

- Suppose that $\rho(i) = j$ for some $\rho \in S_X$. Define $f: S_X \to S_X$ by $f(\sigma) = \rho \circ \sigma \circ \rho^{-1}$.
- (b) Show that $f(\sigma \circ \tau) = f(\sigma) \circ f(\tau)$ for all $\sigma, \tau \in S_X$ and that $f(\sigma^{-1}) = (f(\sigma))^{-1}$.
- (c) Show that if $\sigma \in P_i$ then $f(\sigma) \in P_i$.
- (d) Show that f is a bijection ("isomorphism") between P_i and P_i .

Operations in a set of sets

Let X be a set, P(X) (the "powerset") the set of its subsets (so $P(\{0,1\}) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}\}$. The difference of $A, B \in P(X)$ is the set $A - B \stackrel{\text{def}}{=} \{x \in A \mid x \notin B\}$ (so [0,2] - [-1,1] = (1,2]). The symmetric difference is $A\Delta B \stackrel{\text{def}}{=} (A - B) \cup (B - A)$ (so $[0,2]\Delta[-1,1] = [-1,0) \cup (1,2]$).

- 4. (Checking that $(P(X), E, \Delta)$ is a commutative group).
 - PRAC Show that $A\Delta B$ is the set of $x \in X$ which belong to *exactly one* of A, B. Note that this shows the *commutative law* $A\Delta B = B\Delta A$.
 - (a) (associative law) Show that for all $A, B, C \in P(X)$ we have $(A\Delta B)\Delta C = A\Delta(B\Delta C)$.
 - (b) (neutral element) Find $E \in P(X)$ such that $A\Delta E = A$ for all $A \in P(X)$.
 - (c) (negatives) For all $A \in P(X)$ find a set $\bar{A} \in P(X)$ such that $A\Delta \bar{A} = E$.
- 5. (A quotient construction) Fix $N \in P(X)$ and say that $A, B \in P(X)$ agree away from N if A N = B N. Denote this relation \sim during this problem. For example, as subsets of \mathbb{R} , the intervals [-1,1] and [0,1] agree "away from the negative reals".
 - PRAC Show that $A \sim B$ iff for all $x \in X N$ either x belong to both A, B or to neither.
 - (a) Show that \sim is an equivalence relation. We will use [A] to denote the equivalence class of $A \subset X$ under \sim .
 - (b) Show that if $A \sim A'$, $B \sim B'$ then $(A\Delta B) \sim (A'\Delta B')$.
 - RMK This means the operation $[A]\tilde{\Delta}[B] \stackrel{\text{def}}{=} [A\Delta B]$ is well-defined: it does not depend on the choice of representatives.
 - (c) Show that every equivalence class has a *unique* element which also belongs to P(X N) (that is, exactly one element of the class is a subset of X N).
 - (d) Show that $P(X N) \subset P(X)$ is non-empty and closed under Δ (it is automatically closed under the "bar" operation of 4(c))
 - RMK It follows that $(P(X)/\sim, [\emptyset], \tilde{\Delta})$ and $(P(X-N), \emptyset, \Delta)$ are essentially the same algebraic structure (there is an operation-preserving bijection between them). We say "they are *isomorphic*".

```
(hint for 1(a): what does it mean that x^2 \equiv 1 (p) for x \in \mathbb{Z}?) (hint for 3(a): given \sigma(i) = i and \tau(i) = i, check that (\sigma \circ \tau)(i) = i) (hint for 3(b): use the definition of f, and the idea of PS1 problem 4(b)) (hint for 3(c): what's \rho^{-1}(j)?) (hint for 3(d): find f^{-1})
```

Supplementary Problems I: The Fundamental Theorem of Arithmetic

If you haven't seen this before, you *must* work through problem A.

- A. By definition the empty product (the one with no factors) is equal to 1, and a product with one factor is equal to that factor.
 - (a) Let n be the smallest positive integer which is not a product of primes. Considering the possilibities that n = 1, n is prime, or that n is neither, show that n does not exist. Conclude that every positive integer is a product of primes.
 - (b) Let $\{p_i\}_{i=1}^r$, $\{q_j\}_{j=1}^s$ be sequences of primes, and suppose that $\prod_{i=1}^r p_i = \prod_{j=1}^s q_j$. Show that p_r occurs among the $\{q_j\}$ (hint: p_r divides a product ...)
 - (c) Call two representations $n = \prod_{i=1}^{r} p_i = \prod_{j=1}^{s} q_j$ of $n \ge 1$ as a product of primes *essentially* the same if r = s and the sequences only differ in the order of the terms. Let n be the smallest integer with two essentially different representations as a product of primes. Show that n does not exist.

The following problem is for your amusement only; it is not relevant to Math 322 in any way.

- B. (The *p*-adic absolute value)
 - (a) Show that every non-zero rational number can be written in the form $x = \frac{a}{b}p^k$ for some non-zero integers a, b both prime to p and some $k \in \mathbb{Z}$. Show that k is *unique* (only depends on x). By convention we set $k = \infty$ if x = 0 ("0 is divisible by every power of p").

DEF The *p*-adic absolute value of $x \in \mathbb{Q}$ is $|x|_p = p^{-k}$ (by convention $p^{-\infty} = 0$).

- (b) Show that for any $x, y \in \mathbb{Q}$, $|x+y|_p \le \max\left\{|x|_p, |y|_p\right\} \le |x|_p + |y|_p$ and $|xy|_p = |x|_p |y|_p$ (this is why we call $|\cdot|_p$ an "absolute value").
- (c) Fix $R \in \mathbb{R}_{\geq 0}$. Show that the relation $x \sim y \iff |x y|_p \leq R$ is an equivalence relation on \mathbb{Q} . The equivalence classes are called "balls of radius R" and are usually denoted B(x,R) (compare with the usual absolute value).
- (d) Show that $B(0,R) = \left\{ x \big| \, |x|_p \le R \right\}$ is non-empty and closed under addition and subtraction. Show that $B(0,1) = \left\{ x \big| \, |x|_p \le 1 \right\}$ is also closed under multiplication.

Supplementary Problem II: Permutations and the pigeon-hole principle

- C. (a) Prove by induction on $n \ge 0$: Let X be any finite set with n elements, and let $f: X \to X$ be either surjective or injective. Then f is bijective.
 - (b) conclude that if X,Y are sets of the same size n and $f: X \to Y$ and $g: Y \to X$ satisfy $f \circ g = \mathrm{id}_Y$ then $g \circ f = \mathrm{id}_X$ and the functions are inverse.

Supplementary Problem III: Cartesian products and the CRT

NOTATION. For sets X, Y we write X^Y for the set of functions from Y to X.

D. Let I be an index set, A_i a family of sets indexed by I (in other words, a set-valued function with domain I). The *Cartesian product* of the family is the set of all touples such that the ith element is chosen from A_i , in other words:

$$\prod_{i \in I} A_i = \left\{ a \in \left(\bigcup_{i \in I} A_i \right)^I \middle| \forall i \in I : a(i) \in A_i \right\}$$

(we usually write a_i rather than a(i) for the *i*th member of the touple).

- (a) Verify that for $i = \{1, 2\}, A_1 \times A_2$ is the set of pairs.
- (b) Give a natural bijection

$$\left(\prod_{i\in I} A_i\right)^B \leftrightarrow \prod_{i\in I} \left(A_i^B\right).$$

(you have shown: a vector-valued function is the same thing as a vector of functions).

(b) Let $\{V_i\}_{i\in I}$ be a family of vector spaces over a fixed field F (say $F = \mathbb{R}$). Show that pointwise addition and multiplication endow $\prod_i V_i$ with the structure of a vector space.

DEF This vector space is called the *direct product* of the vector spaces $\{V_i\}$.

- RMK Recall that, if W is another vector space, then the set $Hom_F(W,V)$ of linear maps from W to V is itself a vector space.
- (*c) Let W be another vector space. Show that the bijection of (a) restricts to an isomorphism of vector spaces

$$\operatorname{Hom}_F\left(W,\prod_{i\in I}V_i\right) o \prod_{i\in I}\operatorname{Hom}_F\left(W,V_i\right)$$
.

- E. (General CRT) Let $\{n_i\}_{i=1}^r$ be divisors of $n \ge 1$.
 - (a) Construct a map

$$f: \mathbb{Z}/n\mathbb{Z} \to \prod_{i=1}^r (\mathbb{Z}/n_i\mathbb{Z})$$
,

generalizing the case r = 2 discussed in class.

- (b) Show that f respects modular addition and multiplication.
- (*c) Suppose that $n = \prod_{i=1}^r n_i$ and that the n_i are pairwise relatively prime (for each $i \neq j$, $gcd(n_i, n_j) = 1$). Show that f is an isomorphism.

22