Lior Silberman's Math 322 Problem Set 1, due 14/9/2017

Practice and supplementary problems, and any problems specifically marked "OPT" (optional), "SUPP" (supplementary) or "PRAC" (practice) are *not for submission*. It is possible that the grader will not mark all problems.

Practice problems

The following problem is a review of the axioms for a vector space.

- P1 Let X be a set. Carefully show that pointwise addition and scalar multiplication endow the set \mathbb{R}^X of functions from X to \mathbb{R} with the structure of an \mathbb{R} -vectorspace. Meditate on the case $X = [n] = \{0, 1, \ldots, n-1\}$.
- P2 (Euclid's Lemma) Let a, b, q, r be four integers with b = aq + r. Show that the pairs $\{a, b\}$ and $\{a, r\}$ have the same sets of common divisors, hence the same greatest common divisor.
- P3. Consider the equation 7x + 11y = 1 for unknowns $x, y \in \mathbb{Z}$.
 - (a) Exhibit infinitely many solutions.
 - (*b) Show that you found *all* the solutions.

The integers

- 1. Show that for any integer k, one of the integers k, k+2, k+4 is divisible by 3.
- 2. (Modular arithmetic; see notes for the notation or wait for Tuesday lecture)
 - (a) Give a simple rule for the remainder obtained when dividing 3^n by 13, for $n \in \mathbb{Z}_{\geq 0}$. PRAC Check that $2^{12} \equiv 1$ (13).
 - (b) Let k be the smallest positive integer such that $2^k \equiv 1$ (13). Show that $k \mid 12$.
 - PRAC Check that $2^6 \equiv -1(13)$, $2^4 \equiv 3(13)$.
 - (c) Use the last check to show that k = 12.
 - (d) Show that $2^{i} \equiv 2^{j} (13)$ iff $i \equiv j (12)$.
- 3. Let a, n be positive integers and let $d = \gcd(a, n)$. Show that the equation $ax \equiv 1(n)$ has a solution iff d = 1.
- 4. Let $f: \mathbb{Z} \to \mathbb{Z}$ be *additive*, in that for all $x, y \in \mathbb{Z}$ we have f(x+y) = f(x) + f(y).

PRAC Check that for any $a \in \mathbb{Z}$, $f_a(x) = ax$ is additive.

- (a) Show that f(0) = 0 (hint: 0 + 0 = 0).
- (b) Show that f(-x) = -f(x) for all $x \in \mathbb{Z}$.
- (c) Show by induction on *n* that for all $n \ge 1$, $f(n) = f(1) \cdot n$.
- (d) Show that every additive map is of the form f_a for some $a \in \mathbb{Z}$.
- RMK Let H be the set of additive maps $\mathbb{Z} \to \mathbb{Z}$. We showed that the function $\varphi \colon H \to \mathbb{Z}$ given by $\varphi(f) = f(1)$ is a bijection (with inverse $\psi(a) = f_a$).
- SUPP Show that the bijections φ, ψ are themselves additive maps (addition in H is defined pointwise).

(hints on reverse)

- (for 2(a): try the first few values to find the pattern, then use induction)
- (for 2(b): divide 12 by k using the theorem on division with remainder)
- (for 2(c): consider in turn each proper divisor of 12)
- (for 2(d): as in part b replace i, j with their remainders mod 12. Then, assuming i > j, consider $2^{i+(12-j)}$)

Supplementary problems I: Functions

The following problem will be used in the upcoming discussion of permutations.

- A. Let X,Y,Z,W be sets and let $f: X \to Y, g: Y \to Z$ and $h: Z \to W$ be functions. Recall that the *composition* $g \circ f$ is the function $g \circ f: X \to Z$ such that $(g \circ f)(x) = g(f(x))$ for all $x \in X$.
 - (a) Show that composition is *associative*: that $h \circ (g \circ f) = (h \circ g) \circ f$ (recall that functions are equal if they have the same value at every x).
 - (b) f is called *injective* or *one-to-one* (1:1) if $x \neq x'$ implies $f(x) \neq f(x')$. Show that if $g \circ f$ is injective then so is f.
 - (c) g is called *surjective* or *onto* if for every $z \in Z$ there is $y \in Y$ such that g(y) = z. Show that if $g \circ f$ is surjective then so is g.
 - (d) Suppose that f, g are both surjective or both injective. In either case show that the same holds for $g \circ f$.
 - (e) Give an example of a set *X* and $f, g: X \to X$ such that $f \circ g \neq g \circ f$.

Supplementary Problems II: Subsemigroups of $(\mathbb{Z}_{\geq 0},+)$

- B. The Kingdom of Ruritania mints coins in the denominations d_1, \ldots, d_r Marks (d_i are positive integers, of course). Let $d = \gcd(d_1, \ldots, d_r)$.
 - (a) Show that every payable sum (total value of a combination of coins) is a multiple of d Marks.
 - (b) Show that there exists $N \ge 1$ such that any multiple of d Marks exceeding N can be expressed using the given coins.
 - (c) Let $H \subset \mathbb{Z}_{\geq 0}$ be the set of sums that can be paid using the coins. Show that H is closed under addition.

DEF *H* is called the *subsemigroup of* $\mathbb{Z}_{>0}$ *generated* by $\{d_1, \ldots, d_r\}$.

- C. (partial classification of subsemigroups of $\mathbb{Z}_{>0}$) Let $H \subset \mathbb{Z}_{>0}$ be closed under addition.
 - (a) Show that either $H = \{0\}$ or there are $N, d \ge 1$ such that d divides every element of h, and such that H contains all multiples of d exceeding N.
 - *Hint*: Enumerate the elements of H in increasing order as $\{h_i\}_{i=1}^{\infty}$ and consider the sequence $\{\gcd(h_1,\ldots,h_m)\}_{m=1}^{\infty}$.
 - (b) Conclude that H is *finitely generated*: there are $\{d_1, \ldots, d_r\} \subset H$ such that H is obtained as in problem C.

Supplementary Problems III: Additive groups in \mathbb{R} .

D. (just linear algebra)

- (a) Show that the usual addition and multiplication by rational numbers endow \mathbb{R} with the structure of a vector space over the field \mathbb{Q} .
- (b) Let $f: \mathbb{R} \to \mathbb{R}$ be additive (f(x+y) = f(x) + f(y)). Show that f is \mathbb{Z} -linear: that f(nx) = nf(x) for all $x \in \mathbb{R}, n \in \mathbb{Z}$.
- (c) Show that f is \mathbb{Q} -linear: f(rx) = rf(x) for all $r \in \mathbb{Q}$.
- (d) Let $B \subset \mathbb{R}$ be a basis for \mathbb{R} as a \mathbb{Q} -vector space (this is called a *Hamel basis*). Use B to construct a \mathbb{Q} -linear map $\mathbb{R} \to \mathbb{R}$ which is not of the form $x \mapsto ax$.

E. (add topology ...) Let $f: \mathbb{R} \to \mathbb{R}$ be additive.

- (a) Suppose that f is *continuous*. Show that f(x) = ax where a = f(1).
- (b) (If you have taken Math 420) Suppose that f is Lebesgue (or Borel) measurable. Show that there is $a \in \mathbb{R}$ such that f(x) = ax a.e.
- (c) ("R has no field automorphisms") Let $f: \mathbb{R} \to \mathbb{R}$ satisfy f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y). Show that either f(x) = 0 for all x or f(x) = x for all x.