UBC Math 322; notes by Lior Silberman

3.4. Actions, orbits and point stabilizers (handout)

In this handout we gather a list of examples of group actions and determine the orbits and the stabilizers.

3.4.1. G acting on G/H. Let G be a group, H a subgroup. The regular action of G on itself induces an action on the subsets of G (see Problem Set 6).

- Let C = xH be a coset in G/H and let $g \in G$. Then gC is also a coset: gC = g(xH) = (gx)H. Accordingly the subset $G/H \subset P(G)$ is *invariant* and we can *restrict* the action of *G* to get an action on the invariant subset G/H.
- (1) Orbits: for any two cosets xH, yH let $g = yx^{-1}$. Then $g(xH) = yx^{-1}xH = yH$ so there is only one orbit.
 - We say the action is *transitive*.
- (2) Stabilizers: $\{g \mid gxH = xH\} = \{g \mid gxHx^{-1} = xHx^{-1}\} = \{g \mid g \in xHx^{-1}\} = xHx^{-1}, \text{ so } Stab_G(xH) = xHx^{-1} \text{ in other words, the point stabilizers are exactly the$ *conjugates*of*H*.

PROPOSITION 181. Let G act on X. For $x \in X$ let $H = \text{Stab}_G(x)$ and let $f: G/H \to O(x)$ be the bijection f(gH) = gx of Proposition 176. Then f is a map of G-sets: for all $g \in G$ and coset $C \in G/H$ we have

$$f(g \cdot C) = g \cdot f(C)$$

where on the left we have the action of g on $C \in G/H$ and on the left we have the action of g on $f(C) \in O(x) \subset X$.

3.4.2. GL_n(\mathbb{R}) acting on \mathbb{R}^n .

- For a matrix $g \in G = \operatorname{GL}_n(\mathbb{R})$ and vector $\underline{v} \in \mathbb{R}^n$ write $g \cdot \underline{v}$ for the matrix-vector product. This is an action (linear algebra).
- (1) Orbits: We know that for all g, $g\underline{0} = \underline{0}$ so $\{\underline{0}\}$ is one orbit. For all other non-zero vectors we have:

CLAIM 182. Let *V* be a vector space, $\underline{u}, \underline{v} \in V$ be two non-zero vectors. Then there is a linear map $g \in GL(V)$ such that $g\underline{u} = \underline{v}$.

We need a fact from linear algebra

FACT 183. Let V, W be vector spaces and let $\{\underline{u}_i\}_{i \in I}$ be a basis of V. Let $\{\underline{w}_i\}_{i \in I}$ be any vectors in W. Then there is a unique linear map $f: V \to W$ such that $f(\underline{u}_i) = \underline{w}_i$.

PROOF OF CLAIM. Complete $\underline{u}, \underline{v}$ to a bases $\{\underline{u}_i\}_{i \in I}, \{\underline{v}_i\}_{i \in I}$ ($\underline{u}_1 = \underline{u}, \underline{v}_1 = \underline{v}$). There is a unique linear map $g: V \to V$ such that $g\underline{u}_i = \underline{v}_i$ (because $\{\underline{u}_i\}$ is a basis) and similarly a unique map $h: V \to V$ such that $h\underline{v}_i = \underline{u}_i$. But then for all i we have $(gh)\underline{v}_i = \underline{v}_i = \mathrm{Id}\underline{v}_i$ and $(hg)\underline{u}_i = \underline{u}_i = \mathrm{Id}\underline{u}_i$, so by the uniqueness prong of the Fact we have $gh = \mathrm{Id} = hg$ and g is invertible, that is $g \in \mathrm{GL}(V)$. (2) Stabilizers: clearly all matrices stabilize zero. For other vectors we compute:

$$\operatorname{Stab}_{\operatorname{GL}_n(\mathbb{R})}(\underline{e}_n) = \left\{ g \mid g \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \right\} = \left\{ g = \begin{pmatrix} h & \underline{0} \\ \underline{u} & 1 \end{pmatrix} \mid h \in \operatorname{GL}_{n-1}(\mathbb{R}), \underline{u} \in \mathbb{R}^{n-1} \right\}.$$

(more precisely the stabilizer consists of all matrices $g = \begin{pmatrix} h & 0 \\ \underline{u} & 1 \end{pmatrix}$ where $h \in M_{n-1}(\mathbb{R})$, but it is not hard to show that in this case g is invertible iff h is).

EXERCISE 184. Show that the block-diagonal matrices $M = \left\{ \begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \mid h \in \operatorname{GL}_{n-1}(\mathbb{R}) \right\}$ are a subgroup of $\operatorname{GL}_n(\mathbb{R})$ isomorphic to $\operatorname{GL}_{n-1}(\mathbb{R})$. Show that the matrices $N = \left\{ \begin{pmatrix} I_{n-1} & 0 \\ \underline{u} & 1 \end{pmatrix} \mid \underline{u} \in \mathbb{R}^{n-1} \right\}$ are a subgroup isomorphic to $(\mathbb{R}^{n-1}, +)$. Show that $\operatorname{Stab}_{\operatorname{GL}_n(\mathbb{R})}(\underline{e}_n)$ is the semidirect product

3.4.3. GL_n(\mathbb{R}) acting on pairs of vectors (assume $n \ge 2$ here).

EXERCISE 185. If *G* acts on *X* and *G* acts on *Y* then setting $g \cdot (x, y) = (g \cdot x, g \cdot y)$ gives anthe action action of *G* on $X \times Y$.

We study the example where $G = GL_n(\mathbb{R})$ and $X = Y = \mathbb{R}^n$.

(1) Orbits:

 $M \ltimes N$.

- (a) Clearly $(\underline{0}, \underline{0})$ is a fixed point of the action.
- (b) If $\underline{u}, \underline{v} \neq \underline{0}$ the previous discussion constructed *g* such that $\underline{gu} = \underline{v}$ and hence $g \cdot (\underline{u}, \underline{0}) = (\underline{v}, \underline{0})$ and $g \cdot (\underline{0}, \underline{u}) = (\underline{0}, \underline{v})$. Since $G \cdot (\underline{u}, \underline{0}) \subset \mathbb{R}^n \times \{\underline{0}\}$, we therefore get two more orbits: $\{(\underline{u}, \underline{0}) \mid \underline{u} \neq 0\}$ and $\{(\underline{0}, \underline{u}) \mid \underline{u} \neq 0\}$.
- (c) We now need to understand when there is g such that $g \cdot (\underline{u}_1, \underline{u}_2) = (\underline{v}_1, \underline{v}_2)$ when all vectors are nonzero. When studying the action on \mathbb{R}^n itself we saw that if the pairs $\{\underline{u}_1, \underline{u}_2\}, \{\underline{v}_1, \underline{v}_2\}$ are each linearly independent then completing both to bases will provide such g. Conversely, if $\{\underline{u}_1, \underline{u}_2\}$ are independent then so are $\{\underline{gu}_1, \underline{gu}_2\}$ for any invertible g (g preserves the vector space structure hence linear algebra properties like linear independence). We therefore have an orbit

 $\{(\underline{u}_1, \underline{u}_2) \mid \text{ the vectors are linearly independent} \}$.

(d) The case of linear dependence remains, so we need to consider the orbit of $(\underline{u}_1, \underline{u}_2)$ where both are non-zero and $\underline{u}_2 = a\underline{u}_1$ for some scalar *a*, necessarily non-zero. In that case $g \cdot (\underline{u}_1, \underline{u}_2) = (g\underline{u}_1, g(a\underline{u}_1)) = (g\underline{u}_1, a(g\underline{u}_1))$ so the orbit of $(\underline{u}_1, a\underline{u}_1)$ is contained in

$$\{(\underline{v}, \underline{av}) \mid \underline{v} \neq \underline{0}\}$$
.

Conversely, this is an orbit because if $\underline{u}_1, \underline{v}$ is are both non-zero there is g for which $\underline{gu}_1 = \underline{v}$ and then $g \cdot (\underline{u}_1, \underline{au}_1) = (\underline{v}, \underline{av})$.

Summary: the orbits are $\{(\underline{0},\underline{0})\}$, $\{(\underline{u},\underline{0}) \mid \underline{u} \neq 0\}$, $\{(\underline{0},\underline{u}) \mid \underline{u} \neq 0\}$, $\{(\underline{u}_1,\underline{u}_2) \mid \dim \operatorname{Span}_F \{\underline{u}_1,\underline{u}_2\} = 1$ and for each $a \in F^{\times}$ the set $\{(\underline{u}_1, a\underline{u}_1) \mid \underline{u}_1 \neq \underline{0}\}$.

- (2) Point stabilizers:
 - (a) $(\underline{0},\underline{0})$ is fixed by the whole group.

- (b) $g(\underline{u}, \underline{0}) = (\underline{u}, \underline{0})$ iff $\underline{gu} = \underline{u}$, so this is the case solved before. Similarly for $g \cdot (\underline{u}, a\underline{u}) = (\underline{u}, a\underline{u})$ which holds iff $\underline{gu} = \underline{u}$.
- (c) $g(\underline{e}_{n-1},\underline{e}_n) = (\underline{e}_{n-1},\underline{e}_n)$ holds iff the last two columns of g are $\underline{e}_{n-1},\underline{e}_n$ so

$$\operatorname{Stab}_{\operatorname{GL}_n(\mathbb{R})}\left(\underline{e}_{n-1},\underline{e}_n\right) = \left\{g = \begin{pmatrix} h & 0 \\ y & I_2 \end{pmatrix} \mid h \in \operatorname{GL}_{n-2}(\mathbb{R}), y \in M_{2,n-2}(\mathbb{R})\right\}.$$

EXERCISE 186. Show that the block-diagonal matrices $M = \left\{ \begin{pmatrix} h & 0 \\ 0 & I_2 \end{pmatrix} \mid h \in \operatorname{GL}_{n-2}(\mathbb{R}) \right\}$ are a subgroup of $\operatorname{GL}_n(\mathbb{R})$ isomorphic to $\operatorname{GL}_{n-2}(\mathbb{R})$. Show that the matrices $N = \left\{ \begin{pmatrix} I_{n-2} & 0 \\ y & 1 \end{pmatrix} \mid y \in M_{2,n-2}(\mathbb{R}) \right\}$ are a subgroup isomorphic to $\left(\mathbb{R}^{2(n-2)}, +\right)$. Show that $\operatorname{Stab}_{\operatorname{GL}_n(\mathbb{R})}(\underline{e}_{n-1}, \underline{e}_n)$ is the semidirect product $M \ltimes N$.

3.4.4. $\operatorname{GL}_n(\mathbb{R})$ and $\operatorname{PGL}_n(\mathbb{R})$ acting on $\mathbb{P}^{n-1}(\mathbb{R})$.

DEFINITION 187. Write $\mathbb{P}^{n-1}(\mathbb{R})$ for the set of 1-dimensional subspaces of \mathbb{R}^n (this set is called "projective space of dimension n-1").

- Let L ∈ Pⁿ⁻¹(R), so that L is a line in Rⁿ and let g ∈ GL_n(R). Then g(L) = {g<u>v</u> | <u>v</u> ∈ L} is also a line (the image of a subspace is a subspace, and invertible linear maps preserve dimension), and this defines an action of GL_n(R) on Pⁿ⁻¹(R) (a restriction of the action of GL_n(R) on all subsets of Rⁿ to the set of subsets which are lines).
- (1) The action is transitive: suppose $L = \text{Span} \{\underline{u}\}$ and $L' = \text{Span} \{\underline{v}\}$ for some non-zero vectors $\underline{u}, \underline{v}$. Then any element g such that $\underline{gu} = \underline{v}$ will also map $\underline{gL} = L'$.
- (2) Suppose $L = \text{Span} \{\underline{e}_n\}$. Then gL = L means \underline{ge}_n spans L, so $\underline{ge}_n = \underline{ae}_n$ for some non-zero a. It follows that

$$\operatorname{Stab}_{\operatorname{GL}_n(\mathbb{R})}(F \cdot \underline{e}_n) = \left\{ g = \begin{pmatrix} h & \underline{0} \\ \underline{u} & a \end{pmatrix} \mid h \in \operatorname{GL}_{n-1}(\mathbb{R}), a \in \mathbb{R}^{\times} \underline{u} \in \mathbb{R}^{n-1} \right\}.$$

• Repeat Exercise 184 from before, now with $M = \left\{ \begin{pmatrix} h & 0 \\ 0 & a \end{pmatrix} \mid h \in \operatorname{GL}_{n-1}(\mathbb{R}), a \in \mathbb{R}^{\times} \right\} \simeq \operatorname{GL}_{n-1}(\mathbb{R}) \times \mathbb{R}^{\times}.$

This can be generalized. For the same reason as for lines, the group $GL_n(\mathbb{R})$ acts on the *Grass-mannian*

 $\operatorname{Gr}(n,k) = \{L \subset \mathbb{R}^n \mid L \text{ is a subspace and } \dim_{\mathbb{R}} L = k\}.$

The action is still transitive (for any L, L', take bases $\{\underline{u}_i\}_{i=1}^k \subset L$, $\{\underline{v}_i\}_{i=1}^k \subset L'$, complete both to bases of \mathbb{R}^n and get a map), and the stabilizer will have the form $M \ltimes N$ with $M \simeq \operatorname{GL}_{n-k}(\mathbb{R}) \times \operatorname{GL}_k(\mathbb{R})$ and $N \simeq (M_{k,n-k}(\mathbb{R}), +)$.

3.4.5. O(n) acting on \mathbb{R}^n . Let the orthogonal group $O(n) = \{g \in GL_n(\mathbb{R}) \mid g^t g = Id\}$ act on \mathbb{R}^n .

- This a different kind of *restriction* we restrict the action of $GL_n(\mathbb{R})$ to a subgroup, but the set is still the whole of \mathbb{R}^n .
- (1) Orbits: we know that if $g \in O(n)$ and $\underline{v} \in \mathbb{R}^n$ then $||\underline{gv}|| = ||\underline{v}||$. Conversely, for each $a \ge 0$ { $\underline{v} \in \mathbb{R}^n | ||vv|| = a$ } is an orbit. When a = 0 this is clear (just the zero vector) and otherwise let $\underline{u}, \underline{v}$ both have norm a. Then $\underline{u}_1 = \frac{1}{a}vu$, $\underline{v}_1 = \frac{1}{a}\underline{v}$ are both unit vectors which

we can separately complete to orthonormal bases $\{\underline{u}_i\}, \{\underline{v}_i\}$ respectively. Then the unique invertible linear map $g \in GL_n(\mathbb{R})$ such that $\underline{gu}_i = \underline{v}_i$ is orthogonal (linear algebra exercize). We thus obtain $g \in O(n)$ such that $\underline{gu}_1 = \underline{v}_1$ and hence $\underline{gu} = g(\underline{au}_1) = \underline{agu}_1 = \underline{v}_1 = \underline{v}$.

3.4.6. Isom (\mathbb{R}^n) acting on \mathbb{R}^n . Let Isom (\mathbb{R}^n) be the *Euclidean group*: the group of all *rigid motions* of \mathbb{R}^n (maps $f : \mathbb{R}^n \to \mathbb{R}^n$ which preserve distance, in that $||f(\underline{u}) - f(\underline{v})|| = ||\underline{u} - \underline{v}||$).

- (1) The action is transitive: for any fixed $\underline{a} \in \mathbb{R}^n$ the *translation* $T_{\underline{a}\underline{x}} = \underline{x} + \underline{a}$ preserves distances, making it an element of $\text{Isom}(\mathbb{R}^n)$, and for all $\underline{u}, \underline{v}$ we have $T_{\underline{v}-\underline{u}}(\underline{u}) = \underline{v}$.
- (2) The point stabilizer of zero is exactly the orthogonal group!

PROOF. We know that orthogonal maps preserve distances. Conversely let $f \in \text{Isom}(\mathbb{R}^n)$ satisfy $f(\underline{0}) = \underline{0}$. Then f preserves distance from the origin:

$$\|f(\underline{x})\| = \|f(\underline{x}) - \underline{0}\| = \|f(\underline{x}) - f(\underline{0})\| = \|\underline{x} - \underline{0}\| = \|\underline{x}\|;$$

the difficulty is to show that f is a linear map. To showing that f preserves inner products first note that since $\|\underline{x} - \underline{y}\|^2 = \|\underline{x}\|^2 + \|\underline{y}\|^2 - 2\langle \underline{x}, \underline{y} \rangle$ we have the *polarization identity*

$$\langle \underline{x}, \underline{y} \rangle = \frac{1}{2} \left[\|\underline{x}\|^2 + \|\underline{y}\|^2 - \|\underline{x} - \underline{y}\|^2 \right].$$

Thus

$$\begin{array}{ll} \left\langle f(\underline{x}), f(\underline{y}) \right\rangle &=& \frac{1}{2} \left[\|f(\underline{x})\|^2 + \|f(\underline{y})\|^2 - \|f(\underline{x}) - f(\underline{y})\|^2 \right] \\ &=& \frac{1}{2} \left[\|\underline{x}\|^2 + \|\underline{y}\|^2 - \|\underline{x} - \underline{y}\|^2 \right] \\ &=& \left\langle \underline{x}, y \right\rangle. \end{array}$$

Next let $\{\underline{e}_i\}_{i=1}^n$ be the standard orthonormal basis. Since f preserves inner products, $\underline{u}_i = f(\underline{e}_i)$ also form an orthonormal basis, and there is a unique linear map $g \in O(n)$ such that $\underline{ge}_i = \underline{u}_i$. We conclude by showing that f = g. For this let $\underline{x} \in \mathbb{R}^n$ and let $a_i = \langle \underline{x}, \underline{e}_i \rangle$. Then $\underline{x} = \sum_i a_i \underline{e}_i$ and since

$$\langle f(\underline{x}), \underline{u}_i \rangle = \langle f(\underline{x}), f(\underline{e}_i) \rangle = \langle \underline{x}, \underline{e}_i \rangle = a_i$$

we have

$$f(\underline{x}) = \sum_{i} a_{i} \underline{u}_{i} = \sum_{i} a_{i} g \underline{e}_{i} = g\left(\sum_{i} a_{i} \underline{e}_{i}\right) = g \underline{x}.$$

EXERCISE 188. Let $V = \{T_{\underline{a}} | \underline{a} \in \mathbb{R}^n\} \subset \text{Isom}(\mathbb{R}^n)$ be the group of translations. This is a subgroup isomorphic to \mathbb{R}^n , and $\text{Isom}(\mathbb{R}^n)$ is the semidirect product $O(n) \ltimes V$.

EXERCISE 189. The orbits of $\text{Isom}(\mathbb{R}^n)$ on the space of pairs $\mathbb{R}^n \times \mathbb{R}^n$ are exactly the sets $D_a = \{(\underline{x}, \underline{y}) \mid ||\underline{x} - \underline{y}|| = a\}$ $(a \ge 0)$.