MATH 322: PROBLEMS FOR MASTERY

Part 1. Problems

1. Introduction and concerete examples

1.1. Congruences and modular arithmetic.

(1) Find all solutions to the congruence $5 x \equiv 1$ (7).
(2) Evaluate:
(a) $[3]_{6}+[5]_{6}+[9]_{6},[3]_{7}+[5]_{7}+[9]_{7},[2]_{13} \cdot[5]_{13} \cdot[7]_{13}$.
(b) $\left([3]_{8}\right)^{n}$ (hint: start by finding $\left.\left([3]_{8}\right)^{2}\right)$.
(3) Linear equations.
(a) Use Euclid's algorithm to solve $[5]_{7} x=[1]_{7}$.
(b) Solve $[5]_{7} y=[2]_{7}$ by multiplying both sides by the element from (a).
(c) Solve $\begin{cases}2 x+3 y+4 z & =1 \\ x+y & =3 \text { in } \mathbb{Z} / 7 \mathbb{Z} \text { (imagine all numbers are surrounded by brackets). } \\ x+2 z & =6\end{cases}$

1.2. The symmetric group.

(1) Notation
(a) Let $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 1 & 3 & 6\end{array}\right), \tau=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1\end{array}\right)$ in S_{6}. Compute $\sigma \tau, \tau \sigma, \sigma^{-1}, \tau^{-1}$, $\sigma \tau \sigma^{-1}$.
(b) Compute the cycle structure of the each of the permutations in part (a).
(2) (more cycles)
(a) Decompose $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 3 & 7 & 1 & 4 & 8 & 2 & 6\end{array}\right)$ into cycles
(b) Let $\tau=(12)$. Find the cycle structure of $\tau \sigma, \tau(\tau \sigma)$ and see how the cycles split and merge.
(c) Let $\rho=(53478)$. Find the cycle structure of $\rho \sigma \rho^{-1}$.

2. Groups

2.1. Definitions: groups, subgroups, homomorphisms.

(1) Which of the following are groups? If yes, prove the group axioms. If not, show that an axiom fails.
(a) The "half integers" $\frac{1}{2} \mathbb{Z}=\left\{\left.\frac{a}{2} \right\rvert\, a \in \mathbb{Z}\right\} \subset \mathbb{Q}$, under addition.
(b) The "dyadic integers" $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{a}{2^{k}} \right\rvert\, a \in \mathbb{Z}, k \geq 0\right\} \subset \mathbb{Q}$, under addition.
(c) The non-zero dyadic integers, under multiplication.
(2) $[\mathrm{DF} 1.1 .9]$ Let $F=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}$.
(a) Show that $(F,+)$ is a group.
(b) Show that $(F \backslash\{0\}, \cdot)$ is a group.

RMK: Together with the distributive law, (a),(b) make F a field.
(3) Let G be a commutative group and let $k \in \mathbb{Z}$.
(a) Show that the map $x \mapsto x^{k}$ is a group homomorphism $G \rightarrow G$.
(b) Show that the subsets $G[k]=\left\{g \in G \mid g^{k}=e\right\}$ and $\left\{g^{k} \mid g \in G\right\}$ are subgroups.

RMK For a general group G let $G^{k}=\left\langle\left\{g^{k} \mid g \in G\right\}\right\rangle$ be the subgroup generated by the k th powers. You have shown that, for a commutative group, $G^{k}=\left\{g^{k} \mid g \in G\right\}$.

2.2. Cyclic groups; order of elements.

(1) Let $\kappa=(123456)$ be an 6 -cycle in S_{n}. Find the subgroup $\langle\kappa\rangle$.
(2) For each $n \in \mathbb{Z}$ find the subgroup $\langle n\rangle$.
(3) For each $\sigma \in S_{4}$ find the subgroup $\langle\sigma\rangle$.
(4) Let $\zeta=e^{2 \pi i / n} \in \mathbb{C}$ be a root of unity of order n. Let $g=\left(\begin{array}{cc}0 & 1 \\ -1 & \zeta+\bar{\zeta}\end{array}\right)$. Show that $g \in \mathrm{GL}_{2}(\mathbb{R})$ has order n (hint: diagonalize).
(5) Let $\sigma=\kappa_{r} \kappa_{s} \in S_{n}$ where κ_{r}, κ_{s} are disjoint cycles of length r, s respectively.
(a) Show that $\sigma^{k}=\kappa_{r}^{k} \kappa_{s}^{k}$.
(b) Show that $\sigma^{k}=\mathrm{id}$ iff $\kappa_{r}^{k}=\kappa_{s}^{k}=\mathrm{id}$ iff k is divisible by both r, s.
(c) Show that the order of σ is the least common multiple of r, s.
(d) (Number theory) Show that the least common multiple of r, s satisfies $\operatorname{lcm}(r, s)=\frac{r s}{\operatorname{gcd}(r, s)}$
(e) Generalize (a),(b),(c) to the case where σ is a product of any number of disjoint cycles.

2.3. The dihedral group and generalizations.

(1) Let $D_{2 n}=\left\{c^{\epsilon} r^{i} \mid \epsilon \in \mathbb{Z} / 2 \mathbb{Z}, i \in \mathbb{Z} / n \mathbb{Z}\right\}$ and define $\left(c^{\epsilon} r^{i}\right) \cdot\left(c^{\delta} r^{j}\right)=c^{\epsilon+\delta} r^{\delta(i)+j}$ where

$$
\delta(i)=\left\{\begin{array}{ll}
i & \delta=[0]_{2} \\
-i & \delta=[1]_{2}
\end{array} .\right.
$$

(a) Show that $\left(D_{2 n}, \cdot\right)$ is a group. Write e for its identity element.

- This group is called the dihedral group. It is sometimes confusingly denoted D_{n}.
(b) Let $c^{\prime}=c^{[1]} r^{[0]}$ and $r^{\prime}=c^{[0]} r^{1}$. Show that $\left(c^{\prime}\right)^{2}=e,\left(r^{\prime}\right)^{n}=e$ and that $\left(c^{\prime}\right)^{\epsilon}\left(r^{\prime}\right)^{i}=c^{\epsilon} r^{i}$.
- Accordingly we write c, r for these elements from now on.
(c) Show that $c r \neq r c$ so that $D_{2 n}$ is non-commutative.
(d) Show that every $g \in D_{2 n}$ can be written as a product of elements from $S=\{c, r\}$.
- We say the set $\{c, r\}$ generates $D_{2 n}$.
(e) Show that the map $i \mapsto r^{i}$ gives an isomorphism of $C_{n} \simeq(\mathbb{Z} / n \mathbb{Z},+)$ and the subgroup H of $D_{2 n}$ consisting of powers of r.
(f) Show that for every $g \in D_{2 n}$ and $h \in H$ we have $g h g^{-1} \in H$.
- We say H is normal in $D_{2 n}$.

2.4. Cosets and the index.

(1) $H=\{$ id, (12) $\}$ and $K=\{\mathrm{id},(123),(132)\}$ are two subgroups of S_{3}. Compute the coset spaces S_{3} / H, $H \backslash S_{3}, S_{3} / K, K \backslash S_{3}$.
(2) Let $H<G$ have index 2 and let $g \in G$. Show that $g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\}=H$.
(3) If $H<G$ and $X \subset H$ is non-empty then $X H=H$. In particular, $h H=H$ for any $h \in H$.
(4) Let $K<H<G$ be groups with G finite. Use Lagrange's Theorem to show $[G: K]=[G: H][H: K]$.

2.5. Direct and semidirect products.

(1) Let $G=\mathrm{GL}_{2}(\mathbb{R})$ be the group of 2×2 invertible matrices. We will consider the subgroups $B=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in G \right\rvert\, a d \neq 0\right\}, A=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) \in G \right\rvert\, a d \neq 0\right\}$ and $N=\left\{\left.\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \right\rvert\, b \in \mathbb{R}\right\}$.
(a) Show that these really are subgroups with $A \simeq\left(\mathbb{R}^{\times}\right)^{2}=\mathbb{R}^{\times} \times \mathbb{R}^{\times}$and $N \simeq \mathbb{R}^{+}$. Evidently $N, A \subset B \subset G$.
(b) Show that $B=N \rtimes A$ (you need to show that $B=N A$, that $A \cap N=\{I\}$, and that $N \triangleleft B$).
(c) Directly show that for any fixed a, d with $a d \neq 0$ we have $\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) N=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \right\rvert\, b \in \mathbb{R}\right\}$, demonstrating part of $2(\mathrm{c})$.
(2) Show that $D_{2 n}=R \ltimes C$ where $R=\langle r\rangle \simeq C_{2}, C=\langle c\rangle \simeq C_{n}$.

For more semidirect products see also sheet on examples of group actions.

3. Group actions

3.1. Basic definitions.

(1) Label the elements of the four-group V by $1,2,3,4$ in some fashion, and explicitely give the permutation corresponding to each element by the regular action.
(2) Repeat with S_{3} acting on itself by conjugation (you will now have six permutations in S_{6}).
(3) Find the conjugacy classes in $D_{2 n}$. Verify that the number of conjugacy classes equals the average size of a centralizer (average over elements of $D_{2 n}$).
(4) Find the conjugacy classes of subgroups in S_{4}.
(5) Suppose the group G acts on sets X, Y.
(a) Construct a natural action of G on the Cartesian product $X \times Y$, and check this is an action.
(b) Find the orbits for the action of S_{X} on $X \times X$.

3.2. Conjugation.

(1) Find the conjugacy classes in $D_{2 n}$.

$$
\text { 4. } p \text {-groups and Sylow's Theorems, abelian groups }
$$

(1) The group $H=\left\{\left.\left(\begin{array}{lll}1 & x & z \\ & 1 & y \\ & & 1\end{array}\right) \right\rvert\, x, y, z \in F\right\}$ is called the Heisenberg group over the field F.
(a) Show that H is a subgroup of $\mathrm{GL}_{3}(F)$ (you also need to show containment, that is that each element is an invertible matrix).
(b) Show that $Z(H)=\left\{\left.\left(\begin{array}{lll}1 & 0 & z \\ & 1 & 0 \\ & & 1\end{array}\right) \right\rvert\, z \in F\right\} \simeq(F,+)$.
(c) Show that $H / Z(H) \simeq(F,+)^{2}$ via the map $\left(\begin{array}{lll}1 & x & z \\ & 1 & y \\ & & 1\end{array}\right) \mapsto(x, y)$.
(d) Show that H is non-commutative, hence is not isomorphic to the direct product $F^{2} \times F$.
(e) Suppose $F=\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ with p odd. Then $\# H=p^{3}$ so that H is a p-group. Show that every element of $H\left(\mathbb{F}_{p}\right)$ has order p.
(f) Find all conjugacy classes in H and write the class equation.
(2) Show that every group of order 35 is cyclic. Classify groups of order 10.
(3) How many abelian groups are there of order 3^{50} such that $a^{9}=1$ for all a in the group?
(4) How many elements of order 7 does G have if (a) $G=\left(\mathbb{Z} / 7^{99} \mathbb{Z}\right)$; (b) $G=(\mathbb{Z} / 7 \mathbb{Z})^{99}$

Part 2. Solutions

1. Introduction and concerete examples

1.1. Congruences and modular arithmetic.

(1) Note that $3 \cdot 5=15=14+1$ so that $5 \cdot 3 \equiv 1(7)$. Thus $5 \cdot(3+7 k) \equiv 5 \cdot 3 \equiv 1(7)$ and $\{3+7 k \mid k \in \mathbb{Z}\}$ are solutions. Conversely, if x is a solution then $5(x-3) \equiv 5 x-1 \equiv 0(7)$ so $7 \mid 5(x-3)$. Since 7 is prime and does not divide 5 , we must have $7 \mid x-3$ so $x=3+7 k$ for some $k \in \mathbb{Z}$.
(2) Evaluate:
(a) $[3]_{6}+[5]_{6}+[9]_{6}=[3+5+9]_{6}=[14]_{6}=[2]_{6},[3]_{7}+[5]_{7}+[9]_{7}=[3]_{7},[2]_{13} \cdot[5]_{13} \cdot[7]_{13}=[70]_{13}=[5]_{13}$.
(b) $\left([3]_{8}\right)^{2}=[9]_{8}=[1]_{8}$. It follows that if $n=2 k+\epsilon$ we have $\left([3]_{8}\right)^{n}=\left([3]_{8}\right)^{2 k+\epsilon}=\left([3]_{8}^{2}\right)^{k}[3]_{8}^{\epsilon}$ and hence that

$$
\left([3]_{8}\right)^{n}=\left\{\begin{array}{ll}
{[1]_{8}} & n \text { even } \\
{[3]_{8}} & n \text { odd }
\end{array} .\right.
$$

(3) Linear equations.
(a) See problem 1
(b) Suppose $[5] y \equiv[2]$ in $\mathbb{Z} / 7 \mathbb{Z}$. Multiplying by $[3]$ and using $[3][5]=[1]$ we conclude that $[y] \equiv$ $[3][2]=[6]$. Conversely, $y \equiv[6]$ is a solution since $[5][6]=[30]=[2]$.
(c) We use Gaussian elimination:

$$
\begin{aligned}
& \left\{\begin{array} { l l }
{ 2 x + 3 y + 4 z } & { = 1 } \\
{ x + y } & { = 3 } \\
{ x + 2 z } & { = 6 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l l }
{ y + 4 z } & { = 2 } \\
{ x + y } & { = 3 } \\
{ - y + 2 z } & { = 3 }
\end{array} \Longleftrightarrow \Longleftrightarrow ~ \left\{\begin{array}{ll}
6 z & =5 \\
x+y & =3 \\
-y+2 z & =3
\end{array} \Longleftrightarrow\right.\right.\right. \\
& \left\{\begin{array} { l l }
{ z } & { = - 5 = 2 } \\
{ x + y } & { = 3 } \\
{ y } & { = - 3 + 2 z }
\end{array} \Longleftrightarrow \left\{\begin{array}{ll}
z & =2 \\
y & =1 \\
x & =3-y=2
\end{array} .\right.\right.
\end{aligned}
$$

1.2. The symmetric group.

(1) Notation
(a) $\sigma \tau=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5\end{array}\right), \tau \sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 5 & 2 & 4 & 1\end{array}\right), \sigma^{-1}=\left(\begin{array}{llllll}5 & 2 & 4 & 1 & 3 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6\end{array}\right)=$ $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 5 & 3 & 1 & 6\end{array}\right), \tau^{-1}=\left(\begin{array}{cccccc}2 & 3 & 4 & 5 & 6 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6\end{array}\right)=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 3 & 4 & 5\end{array}\right), \sigma \tau \sigma^{-1}=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 6 & 1 & 2 & 5\end{array}\right)$.
(b) $\sigma=(1534)(2)(6), \tau=(123456), \sigma \tau=(1243)(56), \tau \sigma=(16)(2354), \sigma^{-1}=(4351)(2)(6)$, $\tau^{-1}=(654321), \sigma \tau \sigma^{-1}=(136524)$.
(2)
(a) $\sigma=(154)(237)(68)$.
(b) $\tau \sigma=(154237)(68)$ and the two 3-cycles merged. $\tau(\tau \sigma)=\sigma$ and the 6 -cycle 154237 breaks up to two 3 -cycles.
(c) $\rho \sigma \rho^{-1}=(137)(248)(65)$.

2. Groups

2.1. Definitions.

(1) Which are groups?
(a) $\frac{1}{2} \mathbb{Z}$ is a group: $\left(\frac{a}{2}+\frac{b}{2}\right)+\frac{c}{2}=\frac{a+b+c}{2}=\frac{a}{2}+\left(\frac{b}{2}+\frac{c}{2}\right), \frac{0}{2}+\frac{a}{2}=\frac{a}{2}$ and $\frac{-a}{2}+\frac{a}{2}=\frac{0}{2}$.
(b) $\mathbb{Z}\left[\frac{1}{2}\right]$ is a group.
(c) In $\mathbb{Z}\left[\frac{1}{2}\right] \backslash\{0\}$ note that $1 \cdot x=x$ for all x, so if this was a group the identity element would be 1. Now consider $3=\frac{3}{1}$; if this was a group there would be x such that $3 x=1$ so that $x=\frac{1}{3}$. But by unique factorization there is no way to write $\frac{1}{3}$ in the form $\frac{a}{2^{k}}$ where $k \geq 0-$ if $\frac{1}{3}=\frac{a}{b}$ then $b=3 a$ so b is divisible by 3 .
(a) F is a non-empty subset of \mathbb{R} closed under addition and subtraction, hence a subgroup.
(b) $1=1+0 \sqrt{2} \in F \backslash\{0\} \subset \mathbb{R}^{\times}$so it's enough to show closure. If $a+b \sqrt{2}, c+d \sqrt{2} \neq 0$ then $(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2} \in F$ and the product is non-zero since \mathbb{R} is a field. Also $\frac{a+b \sqrt{2}}{c+d \sqrt{2}}=\frac{(a+b \sqrt{2})(c-d \sqrt{2})}{c^{2}-2 d^{2}}=\frac{a c-2 b d}{c^{2}-2 d^{2}}+\frac{b c-a d}{c^{2}-2 d^{2}} \sqrt{2} \in F \backslash\{0\}$ since the denominator is a non-zero rational number (were $c^{2}-2 d^{2}=0$ it would mean $c^{2}=2 d^{2}$ and this violates unique factorization since the number of factors of 2 of this number is odd on the right, even on the left).

2.2. Cyclic groups.

(1) $\kappa^{2}=(135)(246), \kappa^{3}=(14)(25)(36), \kappa^{4}=(153)(264), \kappa^{5}=(165432)$ and $\kappa^{6}=$ id so $\langle\kappa\rangle=$ $\{\mathrm{id},(135)(246),(14)(25)(36),(153)(264),(165432)\}$.
(2) In the first class we shows that $\langle n\rangle=n \mathbb{Z}$.
(3) Only one representative from each cycle structure is given. $\langle\mathrm{id}\rangle=\{\mathrm{id}\},\langle(12)\rangle=\{\mathrm{id},(12)\},\langle(123)\rangle=$ $\{\mathrm{id},(123),(132)\},\langle(1234)\rangle=\{\mathrm{id},(1234),(13)(24),(1432)\},\langle(12)(34)\rangle=\{\mathrm{id},(12)(34)\}$.
(4) The matrix g is real and has characteristic polynomial $z^{2}-(\operatorname{tr} g) z+(\operatorname{det} g)=z^{2}-(\zeta+\bar{\zeta}) z+1=$ $(z-\zeta)(z-\bar{\zeta})$ since $\zeta \bar{\zeta}=1$. We conclude that there is $S \in \mathrm{GL}_{2}(\mathbb{C})$ such that $g=S\left(\begin{array}{ll}\zeta & \\ & \zeta^{-1}\end{array}\right) S^{-1}$ $\left(\zeta^{-1}=\bar{\zeta}\right)$. We show by induction that $g^{k}=S\left(\begin{array}{ll}\zeta^{k} & \\ & \zeta^{-k}\end{array}\right) S^{-1}$: for $k=0$ this is clear, and if true for k then

$$
\begin{aligned}
g^{k+1} & =g^{k} \cdot g=S\left(\begin{array}{ll}
\zeta^{k} & \\
& \zeta^{-k}
\end{array}\right) S^{-1} S\left(\begin{array}{ll}
\zeta & \\
& \zeta
\end{array}\right) S^{-1} \\
& =S\left(\begin{array}{ll}
\zeta^{k} & \\
& \zeta^{-k}
\end{array}\right)\left(\begin{array}{ll}
\zeta & \\
& \zeta
\end{array}\right) S^{-1}=S\left(\begin{array}{ll}
\zeta^{k+1} & \\
& \zeta^{-k-1}
\end{array}\right) S^{-1}
\end{aligned}
$$

Thus, when $k<n g^{k}$ has eigenvalues $\zeta^{k}, \zeta^{-k} \neq 1$ so isn't the identity matrix while $g^{n}=S\left(\begin{array}{ll}1 & \\ & 1\end{array}\right) S^{-1}=$ I. It follows that g has order n exactly.

2.3. The dihedral group.

(1) Let $D_{2 n}=\left\{c^{\epsilon} r^{i} \mid \epsilon \in \mathbb{Z} / 2 \mathbb{Z}, i \in \mathbb{Z} / n \mathbb{Z}\right\}$ and define $\left(c^{\epsilon} r^{i}\right) \cdot\left(c^{\delta} r^{j}\right)=c^{\epsilon+\delta} r^{\delta(i)+j}$ where

$$
\delta(i)= \begin{cases}i & \delta=[0]_{2} \\ -i & \delta=[1]_{2}\end{cases}
$$

(a) For associativity, we start by noting that $\delta(a+b)=\delta(a)+\delta(b)$ for any $a, b \in \mathbb{Z} / n \mathbb{Z}$ and regardless of the value of δ, and that $(\delta+\eta)(i)=\delta(\eta(i)) \mathrm{f}$ or any $\delta, \eta \in \mathbb{Z} / 2 \mathbb{Z}$ and $i \in \mathbb{Z} / n \mathbb{Z}$. We thus have:

$$
\begin{aligned}
\left(\left(c^{\epsilon} r^{i}\right) \cdot\left(c^{\delta} r^{j}\right)\right) \cdot\left(c^{\eta} r^{k}\right) & =\left(c^{\epsilon+\delta} r^{\delta(i)+j}\right) \cdot\left(c^{\eta} r^{k}\right) \\
& =c^{(\epsilon+\delta)+\eta} r^{\eta(\delta(i)+j)+k} \\
& =c^{\epsilon+\delta+\eta} r^{\eta(\delta(i))+\eta(j)+k}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(c^{\epsilon} r^{i}\right) \cdot\left(\left(c^{\delta} r^{j}\right) \cdot\left(c^{\eta} r^{k}\right)\right) & =\left(c^{\epsilon} r^{i}\right) \cdot\left(c^{\delta+\eta} r^{\eta(j)+k}\right) \\
& =c^{\epsilon+(\delta+\eta)} r^{(\delta+\eta)(i)+\eta(j)+k} \\
& =c^{\epsilon+\delta+\eta} r^{\eta(\delta(i))+\eta(j)+k}
\end{aligned}
$$

For identity, $\left(c^{[0]} r^{[0]}\right) \cdot\left(c^{\delta} r^{j}\right)=c^{[0]+\delta} r^{\delta(0)+j}=\left(c^{\delta} r^{j}\right)$. To invert $\left(c^{\delta} r^{j}\right)$, if $\delta=[0]$ them $\left(c^{[0]} r^{-j}\right) \cdot\left(c^{[0]} r^{j}\right)=c^{[0]} r^{-j+j}=c^{[0]} r^{[0]}$ while if $\delta=[1]$ then

$$
\left(c^{[1]} r^{j}\right) \cdot\left(c^{[1]} r^{j}\right)=c^{[1]+[1]} r^{-j+j}=c^{[0]} r^{[0]}
$$

(b) We show by induction that $\left(r^{\prime}\right)^{k}=c^{[0]_{2}} r^{[k]_{n}}$ for all $k \geq 0$. This is clear for $k=0$, and if true for k then

$$
\left(r^{\prime}\right)^{k+1}=\left(c^{[0]_{2}} r^{[k]_{n}}\right) \cdot\left(c^{[0]_{2}} r^{[1]_{n}}\right)=\left(c^{[0]_{2}+[0]_{2}} r^{[k]_{n}+[1]_{n}}\right)=\left(c^{[0]_{2}} r^{[k+1]_{n}}\right)
$$

In particular, we see that $\left(r^{\prime}\right)^{k} \neq e$ for $0<k<n$ while $\left(r^{\prime}\right)^{n}=e$. Thus r^{\prime} has order n. Finally,

$$
\left(c^{\prime}\right)^{\epsilon}\left(r^{\prime}\right)^{k}=\left(c^{\epsilon} r^{[0]}\right) \cdot\left(c^{[0]_{2}} r^{[k]_{n}}\right)=c^{\epsilon} r^{[0]+[k]}=\left(c^{\epsilon} r^{[k]}\right)
$$

(c) By the formula for multiplicatio, $r c=c r^{[-1]_{n}} \neq c r($ if $n>2)$.
(d) This is part (b)
(e) By definition of multiplication in $D_{2 n}$, the map $i \rightarrow\left(c^{[0]} r^{i}\right)$ is a bijective group homomorphism.
(f) The subgroup H is commutative, so if $g \in H$ we have $g h g^{-1}=g g^{-1} h=h$. Otherwise, $g=c r^{j}$ for some j and then for $h=r^{i}$ we have

$$
\begin{aligned}
g h g^{-1} & =c r^{j} r^{i} r^{-j} c \\
& =c r^{j} c r^{0}=r^{-j}=h^{-1}
\end{aligned}
$$

by definition of multiplication in $D_{2 n}$. We conclude that if $g \notin H$ then the map $h \mapsto g h g^{-1}$ is the map $h \mapsto h^{-1}$ which exchanges elements and their inverses, so preserves H since subgroups are closed under taking inverses.

2.4. Cosets and the index.

(1) $S_{3} / H=\{\{\mathrm{id},(12)\},\{(23),(132)\},\{(13),(123)\}\}, H \backslash S_{3}=\{\{\mathrm{id},(12)\},\{(23),(123)\},\{(13),(132)\}\}$. $S_{3} / K=K \backslash S_{3}=\{\{$ id, (123), (132) $\},\{(12),(23),(13)\}\}$.
(2) By assumption G / H consists of two cosets. Since H itself is one of them and the cosets cover G, it follows that $G-H$ is the other left coset. But $H \backslash G$ is also of size 2 , and it also follows that $G-H$ is also the other right coset. Now let $g \in G$. If $g \in H$ then H is the left coset g belongs to, so $g H=H$. Also $g^{-1} \in H$ and H is the right coset g^{-1} belongs to, so $g H g^{-1}=(g H) g^{-1}=H g^{-1}=H$. Otherwise, $g \notin H$ and then $g H=G-H$ and $H g=G-H$ so $g H=H g$. Multiplying on the right by g^{-1} we find

$$
g H g^{-1}=H g g^{-1}=H
$$

(3) Since H is closed under multiplication, $X H \subset H$. Conversely fix $x \in X$. Then for any $h \in H$ we have $x^{-1} h \in H$ and hence $h=x\left(x^{-1} h\right) \in X H$, so that $H \subset X H$.
(4) We have $[G: K]=\frac{\# G}{\# K}=\frac{\# G}{\# H} \cdot \frac{\# H}{\# K}=[G: H][H: K]$.

2.5. Direct and semidirect products.

(1)
(a) Let $f: \mathbb{R}^{+} \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ be the map $f(b)=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$. This is evidently injective. It is also a group homomorphism $\mathbb{R}^{+} \rightarrow \mathrm{GL}_{2}(\mathbb{R})$:

$$
f\left(b_{1}+b^{\prime}\right)=\left(\begin{array}{cc}
1 & b+b^{\prime} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & b^{\prime} \\
0 & 1
\end{array}\right)=f(b) f\left(b^{\prime}\right)
$$

so its image N is a subgroup, isomorphic to \mathbb{R}^{+}. Similarly, let $g:\left(\mathbb{R}^{\times}\right)^{2} \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ be given by $g(a, d)=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$. This is evidently injective (so a bijection on its image) and easily verified to be a group homomorphism. It follows that the image A is a subgroup isomorphism to $\left(\mathbb{R}^{\times}\right)^{2}$. That B is a subgroup will follow from (b) and 2(b).
(b) By problem 2 it is enough to check that A normalizes N and that $A \cap N=\{I\}$. The last one is clear: if for $x \in \mathrm{GL}_{2}(\mathbb{R})$ there are a, b, d such that $x=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$ then $b=0$,
$a=d=1$ and $x=I_{2}$. For the other claim, let $\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \in N$ and $\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) \in A$. Then $\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)^{-1}=\left(\begin{array}{cc}a & a b \\ 0 & d\end{array}\right)\left(\begin{array}{cc}a^{-1} & 0 \\ 0 & d^{-1}\end{array}\right)=\left(\begin{array}{cc}1 & a b d^{-1} \\ 0 & 1\end{array}\right) \in N$, so A normalizes N.
(c) Set $X=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \right\rvert\, b \in \mathbb{R}\right\}$. Then for any $b \in \mathbb{R}$ we have $\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}a & a b \\ 0 & d\end{array}\right) \in X$ so $\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) N \subset X$. Conversely, we have $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)\left(\begin{array}{cc}1 & a^{-1} b \\ 0 & 1\end{array}\right) \in\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) N$ so
$X \subset\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) N$.

3. Group actions

3.1. Basic definitions.

(1) Say the elements are $e, a, b, a b$, numbered $1,2,3,4$. Then e corresponds to the identity, a corresponds to $(12)(34), b$ corresponds to $(13)(24)$ and $a b$ to (14)(23).
(2) Number the elements 1 to 6 along id, (12), (23), (31), (123), (132). Then id $\mapsto \mathrm{id},(12) \mapsto(34)(56)$, $(23) \mapsto(24)(56),(13) \mapsto(23)(56),(123) \mapsto(234),(132) \mapsto(243)$.
(3) We consider the classes of r^{i} and $c r^{i}$ sepatately.
(a) In the first case, since $\langle r\rangle$ is commutative, there is no point in conjugating by r^{j} and it's enough to find

$$
\left(c r^{j}\right) r^{i}\left(c r^{j}\right)^{-1}=c r^{i} c^{-1}=r^{-i}
$$

We conclude that the conjugacy class of r^{i} is $\left\{r^{i}, r^{-i}\right\}$. This has size 2 unless $i=-i$, which happens when $i=[0]$ or when $i=\left[\frac{n}{2}\right]$ (the latter only when n is even).
(b) We know that any conjugate of $c r^{i}$ is of the form $c r^{k}$ for some k since we know the conjugates of the elements of the form r^{k}. Next,

$$
r^{j} c r^{i} r^{-j}=c r^{i-2 j}
$$

so we see that the conjugacy class of $c r^{i}$ includes at least all $c r^{k}$ where $k-i \in 2 \mathbb{Z} / n \mathbb{Z}$. When n is odd, 2 is invertible so every k is of this form and $\left\{c r^{i}\right\}_{i \in \mathbb{Z} / n \mathbb{Z}}$ are all one class. When n is even, we note that

$$
\left(c r^{j}\right)\left(c r^{i}\right)\left(r^{-j}\right)=c r^{-i-2 j}
$$

but $i-(-i-2 j)=2 i+2 j$ is a multiple of 2 , so we don't get any new conjugate. We conclude that when n is even we have the two classes

$$
\left\{c r^{2 i}\right\}_{i \in \mathbb{Z} / n \mathbb{Z}},\left\{c r^{[1]+2 i}\right\}_{i \in \mathbb{Z} / 2 \mathbb{Z}}
$$

(4) S_{4} has order 24 , so its subgroups can have orders $1,2,3,4,6,8,12,24$.
(a) At orders 1, 24 there can be only one subgroup.
(b) A subgroup of order 2 must contain a unique element of order 2 , which can have the cycle structure (12) or (12)(34) and these aren't conjugate, so there are two conjugacy classes, represented by $\langle(12)\rangle,\langle(12)(34)\rangle$.
(c) A subgruop of order 3 is generated by an element of order 3, which must have cycle structure (123) so there is one conjugacy class, represented by $\langle(123)\rangle$.
(d) A subgroup of order 4 is either isomorphic to C_{4}, in which case it has a generator of order 4, conjugate to (1234) or isomorphic to V, in which case every element has order 2 . If we contain (12) then the only elements of order 2 which commute with it are (34), and (12) (34), so this must be the group. Otherwise we note that $N=\{\mathrm{id},(12)(34),(13)(24),(14)(23)\}$ form a subgroup isomorphic to V, so the classes are the one reprented by $\{\mathrm{id},(12),(34),(12)(34)\}$ and the only consisting of the normal subgroup N.
(e) By Cauchy's Theorem, a subgroup of order 6 will contain an element of order 3, so up to conjugacy contains $\{\mathrm{id},(123),(132)\}$. It will also contain an element of order 2. Adding (12), (13) or (23) gives $S_{\{1,2,3\}} \simeq S_{3}$ and this is clearly one conjugacy class. Adding (14), (24), (34) (they are all conjugacy by (123)) gives all of S_{4} so this isn't possible. The elements (12)(34), (13)(24), (23)(14)
are all conjguate by (123) and adding them will give a copy of V so order divisible by 4 . We conclude that $\left\{S_{\{1,2,3\}}, S_{\{1,2,4\}}, S_{\{1,3,4\}}, S_{\{2,3,4\}}\right\}$ is the conjugacy class at order 6 .
(f) There is no subgroup of order 8.
(g) By the reasoning of part (e), at order 12 we have exactly A_{4} generated by (123) and (12) (34).
(5) Suppose the group G acts on sets X, Y.
(a) Define $g \cdot(x, y)=(g \cdot x, g \cdot y)$. Then $e \cdot(x, y)=(e \cdot x, e \cdot y)=(x, y)$ and $g \cdot(h \cdot(x, y))=g \cdot(h \cdot x, h \cdot y)=(g \cdot(h \cdot x), g \cdot(h \cdot y))=((g h) \cdot x,(g h) \cdot y)=(g h) \cdot(x, y)$.
(b) We have $\sigma \cdot(x, x)=(\sigma(x), \sigma(x))$. Since for all $x, x^{\prime} \in X$ there is σ with $\sigma(x)=x^{\prime}$, we conclude that one orbit is the diagonal $\{(x, x) \mid x \in X\}$. The key idea is to see that we can extent partial permutations: if $x \neq y, x^{\prime} \neq y^{\prime}$ then there is σ with $\sigma(x)=x^{\prime}, \sigma(y)=y^{\prime}$.

4. p-Groups and Sylow's Theorems, abelian groups

(1) For a field F let $H=\left\{\left.\left(\begin{array}{lll}1 & x & z \\ & 1 & y \\ & & 1\end{array}\right) \right\rvert\, x, y, z \in F\right\}$ is called the Heisenberg group over F.
(a) We have $\left(\begin{array}{lll}1 & x & z \\ & 1 & y \\ & & 1\end{array}\right)\left(\begin{array}{ccc}1 & x^{\prime} & z^{\prime} \\ & 1 & y^{\prime} \\ & & 1\end{array}\right)=\left(\begin{array}{ccc}1 & x+x^{\prime} & z+z^{\prime}+x y^{\prime} \\ & 1 & y+y^{\prime} \\ & & 1\end{array}\right)$ (so this is closed under matrix multiplication). In particular, $\left(\begin{array}{ccc}1 & x & z \\ & 1 & y \\ & & 1\end{array}\right)\left(\begin{array}{ccc}1 & -x & x y-z \\ & 1 & -y \\ & & 1\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ & 1 & 0 \\ & & 1\end{array}\right)$ so each element of $H(F)$ is invertible (hence $H(F) \subset \mathrm{GL}_{3}(F)$), and the inverse belongs to $H(F)$. $H(F)$ contains the identity matrix (let $x=y=z=0$) so it is non-empty.
(b) $\left(\begin{array}{ccc}1 & x^{\prime} & z^{\prime} \\ & 1 & y^{\prime} \\ & & 1\end{array}\right)\left(\begin{array}{lll}1 & x & z \\ & 1 & y \\ & & 1\end{array}\right)=\left(\begin{array}{ccc}1 & x+x^{\prime} & z+z^{\prime}+x^{\prime} y \\ & 1 & y+y^{\prime} \\ & & 1\end{array}\right)$. Fixing x, y, z we see that

$$
\left(\begin{array}{ccc}
1 & x & z \\
& 1 & y \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & x^{\prime} & z^{\prime} \\
& 1 & y^{\prime} \\
& & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & x^{\prime} & z^{\prime} \\
& 1 & y^{\prime} \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & x & z \\
& 1 & y \\
& & 1
\end{array}\right)
$$

for all $x^{\prime}, y^{\prime}, z^{\prime}$ iff $x^{\prime} y=x y^{\prime}$ for all x^{\prime}, y^{\prime}. If $x=y=0$ this is of course an identity, but if one of x, y is non-zero then choosing one of x^{\prime}, y^{\prime} to be zero and the other 1 makes one of $x^{\prime} y, x y^{\prime}$ zero and the other non-zero, showing that $\left(\begin{array}{lll}1 & x & z \\ & 1 & y \\ & & 1\end{array}\right)$ is non-central. To see that $Z(H) \simeq F^{+}$ check that the bijection $z \mapsto\left(\begin{array}{ccc}1 & 0 & z \\ & 1 & 0 \\ & & 1\end{array}\right)$ is a group homomorphism.
(c) Consider the map $f\left(\left(\begin{array}{lll}1 & x & z \\ & 1 & y \\ & & 1\end{array}\right)\right)=(x, y)$. The first calculation of (a) shows that

$$
\begin{aligned}
f\left(\left(\begin{array}{ccc}
1 & x & z \\
& 1 & y \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & x^{\prime} & z^{\prime} \\
& 1 & y^{\prime} \\
& & 1
\end{array}\right)\right) & =f\left(\left(\begin{array}{ccc}
1 & x+x^{\prime} & z+z^{\prime}+x y^{\prime} \\
& 1 & y+y^{\prime} \\
& & 1
\end{array}\right)\right) \\
& =\left(x+x^{\prime}, y+y^{\prime}\right)=(x, y)+\left(x^{\prime}, y^{\prime}\right) \\
& =f\left(\left(\begin{array}{lll}
1 & x & z \\
& 1 & y \\
& & 1
\end{array}\right)\right)+f\left(\left(\begin{array}{lll}
1 & x^{\prime} & z^{\prime} \\
& 1 & y^{\prime} \\
& 1
\end{array}\right)\right)
\end{aligned}
$$

that is that f is a group homomorphism $H(F) \rightarrow\left(F^{+}\right)^{2}$. The kernel is exactly the set of elements such that $x=y=0$, that is the center. The first isomorhpism theorem then says that
f induces an isomorphism between $H / \operatorname{Ker}(f)=H / Z(H)$ and its image. But since all x, y are possible, f is surjective and the claim follows.
(d) We saw that $Z(H) \neq H$.
(e) We show by that for $k \geq 0,\left(\begin{array}{lll}1 & x & z \\ & 1 & y \\ & & 1\end{array}\right)^{k}=\left(\begin{array}{ccc}1 & k x & k z+\binom{k}{2} x y \\ & 1 & k y \\ & 1\end{array}\right)$. This is clear for $k=0$ (both sides are the identity). We continue by induction:

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & x & z \\
& 1 & y \\
& & 1
\end{array}\right)^{k+1} & =\left(\begin{array}{lll}
1 & x & z \\
& 1 & y \\
& & 1
\end{array}\right)^{k}\left(\begin{array}{lll}
1 & x & z \\
& 1 & y \\
& & 1
\end{array}\right)^{1} \\
& =\left(\begin{array}{ccc}
1 & k x & k z+\binom{k}{2} x y \\
& 1 & k y \\
& & 1
\end{array}\right)\left(\begin{array}{lll}
1 & x & z \\
& 1 & y \\
& 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & (k+1) x & k z+\binom{k}{2} x y+k x y \\
& 1 & (k+1) y \\
& & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & (k+1) x & k z+\binom{k+1}{2} x y \\
& 1 & (k+1) y \\
& & 1
\end{array}\right)
\end{aligned}
$$

since $\binom{k}{2}+k=\binom{k}{2}+\binom{k}{1}=\binom{k+1}{2}$. In particular, for $k=p$ we get

$$
\left(\begin{array}{ccc}
1 & x & z \\
& 1 & y \\
& & 1
\end{array}\right)^{p}=\left(\begin{array}{ccc}
1 & p x & p z+p \frac{p+1}{2} x y \\
& 1 & p y \\
& & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
& 1 & 0 \\
& & 1
\end{array}\right) .
$$

(2) If $\# G=35$ then $n_{3}(G)=1, n_{5}(G)=1$ and $G \simeq C_{3} \times C_{5} \simeq C_{35}$.
(3) A is a product of cyclic groups, each of order 3 or 9 (not more, since then we'd have elements of order 27). Suppose there are a groups of order 9 . Then $A \simeq\left(C_{9}\right)^{a} \times\left(C_{3}\right)^{50-2 a}$ for $0 \leq a \leq 25$, for a total of 26 groups.
(4) (a) G is cyclic, so has a unique subgroup of order 7 , which would have 6 elements of order 7 . Conversely every element of order 7 generates this unique subgroup, so there are exactly 6 such elements. (b) Here every element has order dividing 7, so there are $7^{99}-1$ elements of order 7 .

