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Introduction

Lior Silberman, lior@Math.UBC.CA, http://www.math.ubc.ca/~lior
Office: Math Building 229B
Phone: 604-827-3031

0.1. Administrivia

• Problem sets will be posted on the course website.
– To the extent I have time, solutions may be posted on Connect.

• Textbooks
– Rotman
– Dummit and Foote
– Algebra bookshttp://www.espn.com/nba/

• There will be a midterm and a final. For more details see syllabus.
– Policies, grade breakdown also there.

0.2. Motivation

Coxeter came to Cambridge and he gave a lecture, then he had this problem ... I
left the lecture room thinking. As I was walking through Cambridge, suddenly the
idea hit me, but it hit me while I was in the middle of the road. When the idea
hit me I stopped and a large truck ran into me ... So I pretended that Coxeter had
calculated the difficulty of this problem so precisely that he knew that I would get
the solution just in the middle of the road ... One consequence of it is that in a group
if a2 = b3 = c5 = (abc)−1, then c610 = 1.

J.H. Conway, Math. Intelligencer v. 23 no. 2 (2001)
• Groups = Symmetry (see slides)

– In geometry
– In physics
– Combinatorially
– In mathematics

• Course also (mainly?) about formal mathematics.
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0.3. Course plan (subject to revision)

• Examples / Calculation: Z,Sn, GLn(R).
• Basics

– Groups and homomorphisms.
– Subgroups; Cosets and Lagrange’s Theorem.
– Normal subgroups and quotients.
– Isomorphism Theorems
– Direct and semidirect products

• Group Actions
– Conjugation; class formula
– Symmetric groups; Simplicity of An
– Group actions

• Sylow Theorems
– p-Groups
– Sylow Theorems
– Groups of small order

• Finitely Generated abelian groups.
• Free groups; Generators and relations.
• Other topics if time permits.
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CHAPTER 1

Some explicit groups

1.1. Z (Lectures 1-3)

FACT 1 (Properties of the Integers). Integers can be added, multiplied, and compared.
0. The usual laws or arithmetic hold.

(1) < is a linear order, and it respects addition and multiplication by positive numbers.
(2) (Well-ordering) If A ⊂ Z is bounded below, it contains a least element. 1 is the least

positive integer.

EXERCISE 2. Every positive integer is of the form 1+ 1+ · · ·+ 1 (hint: consider the least
positive integer not of this form and subtract 1).

We first examine the additive structure, and then the multiplicative structure.

LEMMA 3. Well-ordering is equivalent to the principle of induction (if A ⊂ Z has 0 ∈ A and
(n ∈ A⇒ (n+1) ∈ A) then N⊂ A.

PROOF (⇒). Let A⊂ Z satisfy 0 ∈ A and (n ∈ A⇒ (n+1) ∈ A). Let B =N\A. Suppose B is
non-empty; then by the well-ordering principle there is c = minB. �

1.1.1. The group (Z,+). We note the following properties of addition: for all x,y,z ∈ Z
• Associativity: (x+ y)+ z = x+(y+ z)
• Zero: 0+ x = x+0 = x
• Inverse: there is (−x) ∈ Z such that x+(−x) = (−x)+ x = 0.
• Commutativity: x+ y = y+ x.

PROBLEM 4. Which subsets of Z are closed under addition and inverses? (analogues of “sub-
spaces” of a vector space)

EXAMPLE 5. {0}, all even integers. What else?

LEMMA 6 (Division with remainder). Let a,b ∈ Zwith a > 0. Then there are unique q,r with
0≤ r < a such that

b = qa+ r .

PROOF. (Existence) Given b,a let A be the set of all positive integers c such that c = b− qa
for some q ∈ Z. This is non-empty (for example, b− (−(|b|+ 1))a ≥ a+ |b|(a− 1) ≥ 0), and
hence has a least element r, say r = b−qa. If r ≥ a then 0≤ r−a < r and r−a = b− (q+1)a, a
contradiction.

(Uniqueness) Suppose that there are two solutions so that

b = qa+ r = q′a+ r′ .

We then have
r− r′ = a

(
q′−q

)
.
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If r = r′ then since a 6= 0 we must have q = q′. Otherwise wlog r > r′ and then q′ > q so q′−q≥ 1
and r− r′ ≥ a, which is impossible since r− r′ ≤ r ≤ a−1. �

PROPOSITION 7. Let H ⊂ Z be closed under addition and inverses. Then either H = {0} or
there is a ∈ Z>0 such that H = {xa | x ∈ Z}. In that case a is the least positive member of H.

PROOF. Suppose H contains a non-zero element. Since it is closed under inverses, it contains
a positive member. Let a be the least positive member, and let b ∈ H. Then there are q,r such that
b = qa+ r. Then r = b−qa ∈H (repeatedly add a or (−a) to b). But r < a, so we must have r = 0
and b = qa. �

OBSERVATION 8. To check if b was divisible by a we divide anyway and examine the remainder.

Review of Lecture 1: two key techniques.
(1) To prove something by induction, consider the “least counterexample”, use the truth of

the proposition below that to get a contrdiction.
(2) To check if a|b divide b by a and examine the remainder.

1.1.2. Multiplicative structure (Lecture 2).

DEFINITION 9. Let a,b ∈ Z. Say “a divides b” and write a|b if there is c such that b = ac.
Write a - b otherwise.

EXAMPLE 10. ±1 divide every integer. Only ±1 divide ±1. Every integer divides 0, but only
0 divides 0. 2|14 but 3 - 14. |a| divides a.

THEOREM 11 (Bezout). Let a,b∈Z not be both zero, and let d be the greatest common divisor
of a,b (that is, the greatest integer that divides both of them). Then there are x,y ∈ Z such that
d = ax+by, and every common divisor of a,b divides d.

PROOF. Let H = {ax+by | x,y ∈ Z}. Then H is closed under addition and inverses and con-
tains a,b hence is not {0}. By Proposition 7 there is d ∈ Z>0 such that H = Zd. Since a,b ∈ H it
follows that d|a, d|b so d is a common divisor. Conversely, let x,y be such that d = ax+by and let
e be another common divisor. then e|a,e|b so e|ax,e|by so e|ax+by = d. In particular, e≤ d so d
is the greatest common divisor. �

ALGORITHM 12 (Euclid). Given a,b set a0,a1be |a| , |b| in decreasing order. Then a0,a1 ∈ H.
Given an−1 ≥ an > 0 divide an−1by an, getting:

an−1 = qnan + rn .

Then rn = an−1− qnan ∈ H (closed under addition!) and we can set set an+1 = rn < an. The
sequence an is strictly decreasing, so eventually we get an+1 = 0.

CLAIM 13. When an+1 = 0 we have an = gcd(a,b).

PROOF. Let e = an. Since an ∈ H we have gcd(a,b)|e. We have e|an (equal) and e|an−1
(remainder was zero!). Since an−2 = qn−1an−1 +an we see e|an−2. Continuing backwards we see
that e|a0,a1so e|a,b. It follows that e is a common divisor e|gcd(a,b) and we conclude they are
equal. �

REMARK 14. It is also not hard to show (exercise!) that gcd(an−1,an) = gcd(an,an+1). It
follows by induction that this is gcd(a,b), and we get a different proof that the algorithm works,
and hence of Bezout’s Theorem.
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EXAMPLE 15. (69,51) = (51,18) = (18,15) = (15,3) = (3,0) = (3). In fact, we also find
18 = 69−51, 15 = 51−2 ·18 = 3 ·51−2 ·69, 3 = 18−15 = 3 ·69−4 ·51.

1.1.3. Modular arithmetic and Z/nZ.
• Motivation: (1) New groups (2) quotient construction.

DEFINITION 16. Let a,b,n ∈ Z with n ≥ 1. Say a is congruent to b modulu n, and wite
a≡ b (n) if n|b−a.

LEMMA 17. This is an equivalence relation.

• Aside: Equivalence relations
– Notion of equivalence relation.
– Equivalence classes, show that they partition the set,

LEMMA 18. Suppose a≡ a′, b≡ b′. Then a+b≡ a′+b′, ab≡ a′b′.

PROOF. (a′+b′)− (a+b) = (a′−a)+(b′−b); a′b′−ab = (a′−a)b′+a(b′−b). �

• Aside: quotient by equivalence relations
– Set of equivalence classes

DEFINITION 19. Let Z/nZ denote the quotient of Z by the equivalence relation ≡ (n). Define
on it arithmetic operations by

[a]n± [b]n
def
= [a+b]n ,

[a]n · [bn]
def
= [ab]n .

OBSERVATION 20. Then laws of arithmetic from Z still hold. Proof: they work for the repre-
sentatives.

• Warning: actually needed to check that the operations were well-defined. That’s the
Lemma.
• Get additive group (Z/nZ,+).
• Note the “quotient” homomorphism (Z,+)→ (Z/nZ,+).

1.1.4. The multiplicative group (Lecture 3). Let (Z/nZ)× = {a ∈ Z/nZ | (a,n) = 1}.

LEMMA 21. (Z/nZ)× is closed under multiplication and inverses.

PROOF. Suppose ax+ny = 1, bz+nw = 1. multiplying we find

(ab)(xz)+n(axw+ ybz+nyw) = 1

so (ab,n) = 1. For inverses see PS1. �

REMARK 22. Why exclude the ones not relatively prime? These can’t have inverses.

DEFINITION 23. This is called the multiplicative group mod n.

• Addition tables.
• Multiplication tables.
• Compare (Z/2Z,+), (Z/3Z)×, (Z/4Z)×.
• Compare (Z/4Z,+), (Z/5Z)× but (Z/8Z)×.
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REMARK 24. In general, (Z/pZ)× ' (Z/(p−1)Z,+) – but the isomorphism is computation-
ally hard (relevant hardness of discrete log hence cryptography).

DEFINITION 25. Euler’s totient function is the function φ(n) = #(Z/nZ)×.

LEMMA 26. ∑d|n φ(n) = n.

PROOF. For each d|n let Ad = {0≤ a < n | gcd(a,n) = d}. Then
{ a

d | a ∈ Ad
}
=
{

0≤ b < n
d | gcd(b, n

d ) = 1
}

.
In particular, #Ad = φ

( n
d

)
. �

1.1.5. Primes and unique factorization.

DEFINITION 27. Call p prime if it has no divisors except 1 and itself.

Note that p is prime iff (Z/pZ)× =
{

1̄, · · · , p−1
}

.

COROLLARY 28. p|ab iff p|a or p|b.

PROOF. Suppose p - a and p - b. Then [a]p , [b]p are relatively prime to p hence invertible, say
with inverses a′, b′. Then (ab)(a′b′) ≡ (aa′)(bb′) ≡ 1 · 1 ≡ 1(p) so ab is invertible mod p hence
not divisible by p. �

THEOREM 29 (Unique factorization). Every non-zero integer can be uniquely written in the
form ε ∏p prime pep where ε ∈ {±1} and almost all ep = 0.

PROOF. Supplement to PS2. �

1.1.6. The Chinese Remainder Theorem. We start with our second example of a non-trivial
homomorphism.

Let n1|N. Then the map [a]N 7→ [a]n1
respects modular addition and multiplication (pf: take

representatives in Z). Now suppose that n1,n2|n and consider the map

[a]N 7→
(
[a]n1

, [a]n2

)
.

This also respects addition and multiplication (was OK in every coordinate).

DEFINITION 30. Call n,m relatively prime if gcd(n,m) = 1.

Next comes our first non-trivial isomorphism.

THEOREM 31 (Chinese Remainder Theorem). Let N = n1n2 with n1,n2 relatively prime. Then
the map

f : Z/NZ→ (Z/n1Z)× (Z/n2Z)
constructed above is a bijection which respect addition and multiplication (that is, an isomorphism
of the respective algebraic structures).

PROOF. For surjectivity, let x,y be such that

n1x+n2y = 1 .

Let b1 = n2y and let b2 = n1x. Then:

f ([b1]N) = ([1]n1, [0]n2)

f ([b2]N) = ([0]n1, [1]n2) .

9



It follows that {b1,b2} is a “basis” for this product structure: for any a1,a2 mod n1,n2 respectively
we have

f ([a1b1 +a2b2]N) = ([a1]n1 · [1]n1, [a1]n2 · [0]n2)+([a2]n1 · [0]n1, [a2]n2 · [1]n2)

= ([a1]n1 , [0]n2)+([0]n1, [a2]n2) = ([a1]n1, [a2]n2) .

Injectivity now following from the pigeon-hole principle (supplement to PS2). �

REMARK 32. Meditate on this. Probably first example of a non-obvious isomorphism, and a
non-obvious “basis”.

1.2. Sn (Lecture 4)

1.2.1. Permutations: concerete and abstract.

DEFINITION 33. Let X be a set. A permutation on X is a bijection σ : X → X (a function
which is 1 : 1 and onto). The set of all permutations will be denoted SX and called the symmetric
group.

Recall that the composition of functions f : Y → Z and g : X → Y is the function f ◦g : X → Z
given by ( f ◦g)(x) = f (g(x)).

LEMMA 34. Composition of functions is associative. The identity function idX : X→X belongs
to the symmetric group and is an identity for composition.

EXAMPLE 35.
(

1
1

)
,
(

1 2
2 1

)
,
(

1 2 3 4
4 2 1 3

)
. The identity map. Non-example

(
1 2
1 1

)
.

LEMMA 36. Let σ : X → X be a function.

(1) σ : X→X is a bijection iff there is a “compositional inverse” σ̄ : X→X such that σ ◦σ̄ =
σ̄ ◦σ = id.

(2) SX is closed under composition and compositional inverse.
(3) Suppose σ ∈ SX and that στ = id or that τσ = id. Then τ = σ̄ . In particular, the

compositional inverse is unique and will be denoted σ−1.
(4) (στ)−1 = τ−1σ−1.

PROOF. (2) Suppose σ ,τ ∈ SX and let σ̄ , τ̄ be as in (1). Then σ satisfies σ ◦ σ̄ = σ̄ ◦σ = id so
σ̄ ∈ SX . Also, (τ̄ σ̄)(στ) = (τ̄ (σ̄σ))τ = (τ̄ id)τ = id and similarly in the other order, so στ ∈ SX .

(3) Suppose στ = id. Compose with σ̄ on the left. Then σ̄ = σ̄(στ) = (σ̄σ)τ = idτ = τ . �

REMARK 37. Note that SX is not commutative!
(

1 2 3
2 3 1

)(
1 2 3
2 1 3

)
=

(
1 2 3
3 2 1

)
but(

1 2 3
2 1 3

)(
1 2 3
2 3 1

)
=

(
1 2 3
1 3 2

)
.

Also, note that
(

1 2 3
2 1 3

)(
1 2 3
2 1 3

)
=

(
1 2 3
1 2 3

)
– can have σ−1 = σ (“involution”).

LEMMA 38. #Sn = n!.

PROOF. n ways to choose σ(1), n−1 ways to choose σ(2) and so on. �
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1.2.2. Cycle structure.

DEFINITION 39. For r ≥ 2 call σ ∈ SX an r-cycle if there are distinct i1, . . . , ir ∈ X such that
σ(i j) = i j+1 for 1≤ j ≤ r−1, suich that σ(ir) = i1, and that σ(i) = i if i 6= i j for all j.

EXAMPLE 40.
(

1 2 3 4
4 2 3 1

)
,
(

1 2 3 4
4 2 1 3

)
,
(

1 2 3 4
2 3 4 1

)
.

DEFINITION 41. Let σ ∈ SX . Set supp(σ) = {i ∈ X | σ(i) 6= i}.

LEMMA 42. σ ,σ−1 have the same support. Suppose σ ,τ have disjoint supports. Then στ =
τσ .

PROOF. σ(i) = i iff σ−1(i) = i. If i ∈ supp(σ) then j = σ(i) ∈ supp(σ) (else i = σ−1( j) = j a
contradiction). Thus σ(i) ∈ Fix(τ) so τσ(i) = σ(i). Also, i ∈ Fix(τ) so στ(i) = σ(i)). Similarly
if i ∈ supp(τ). If i is fixed by both σ ,τ there’s nothing to prove. �

THEOREM 43 (Cycle decomposition). Every permutation on a finite set is a product of disjoint
cycles. Furthermore, the representation is essentially unique: if we add a “1-cycle”(i) for each
fixed point, the factorization is unique up to order of the cycles.

PROOF. Let σ be a counterexample with mininal support. Then σ 6= id, so it moves some i1.
Set i2 = σ(i1), i3 = σ(i3) and so on. They are all distinct (else not injective) and since X is finite
eventually we return, which must be to i1 (again by injectivity). Let κ be the resulting cycle. Then
κ−1σ agrees with σ off

{
i j
}

and fixes each i j. Factor this and multiply by κ .
For uniqueness note that the cycles can be intrinsically defined. �

EXAMPLE 44.
(

1 2 3 4 5 6 7
6 3 2 1 5 7 4

)
= (1674)(23)(5).

1.2.3. Odd and even permutations; the sign. (Taken from Rotman page 8) We now suppose
X = [n] is finite.

LEMMA 45. Every permutation is a product of transpositions.

PROOF. By induction (i1 · · · ir) = (i1i2) · · ·(ir−1ir), that is every cycle i �

DEFINITION 46. Let An (the “alternating” group) be the set of permutations that can be written
as a product of an even number of transpositions.

REMARK 47. An is closed under multiplication and inverses, so it is a subgroup of Sn.

LEMMA 48. Let 1≤ k ≤ n. Then

(a1ak)(a1 . . .an) = (a1 . . .ak−1)(ak . . .an)

(a1ak)(a1 . . .ak−1)(ak . . .an) = (a1 . . .an)

PROOF. First by direct evaluation, second follows from first on left multiplication by the trans-
position. �

Discussion: cycle gets cut in two, or two cycles glued together. What is not a1? cyclicity of
cycles.

EXAMPLE 49. (17)(1674)(23)(5)= (16)(74)(23)(5) while (12)(1674)(23)(5)= (167423)(5) .
11



DEFINITION 50. Let σ = ∏
t
j=1 β j be the cycle factorization of σ ∈ Sn, including one cycle for

each fixed point. Then sgn(α) = (−1)n−t is called the sign of σ .

LEMMA 51. Let τ be a transposition. Then sgn(τσ) =−sgn(σ).

PROOF. Suppose τ = (a1ak). Either both are in the same cycle or in distinct cycles – in either
case the number of cycles changes by exactly 1. �

THEOREM 52. For all τ,σ ∈ Sn we have sgn(τσ) = sgn(τ)sgn(σ).

PROOF. Let H = {τ ∈ Sn | ∀σ : sgn(τσ) = sgn(τ)sgn(σ)}. Then H contains all transposi-
tions. Also, H is closed under multiplication: if τ,τ ′ ∈ H and σ ∈ Sn then

sgn
(
(ττ
′)σ
) (assoc)

= sgn
(
τ(τ ′σ)

)
τ∈H
= sgn(τ)sgn

(
τ
′
σ
)

τ ′∈H
= sgn(τ)sgn(τ ′)sgn(σ)

τ∈H
= sgn

(
ττ
′)sgn(σ) .

By Lemma 45 we see that H = Sn and the claim follows. �

COROLLARY 53. If σ = ∏
r
i=1 τi with each τi are transposition then sgn(τ) = (−1)r, and in

particular the parity of r depends on σ but not on the representation.

COROLLARY 54. For n≥ 2, #An =
1
2#Sn.

PROOF. Let τ be any fixed transposition. Then the map σ 7→ τσ exchanges the subsets An,
Sn−An of Sn and shows they have the same size. �

EXERCISE 55. An is generated by the cycles of length 3.

1.3. GLn(R) (optional)

Let GLn(R) = {g ∈Mn(R) | det(g) 6= 0}. It is well-known that matrix multiplication is as-
sociative and In is an identity (best proof of associativity: matrix multiplication corresponds to
composition of linear maps and composition of functions is associative).

LEMMA 56. Every g ∈ GLn(R) has an inverse.

SUMMARY 57. (GLn(R), ·) is a group.

Nex, recall that the map det : GLn(R)→ R× respects multiplication: det(gh) = (detg)(deth).
This is one of our first examples of a group homomorphism.

EXERCISE 58. (Some subgroups)

(1) Show that {g ∈ GLn(R) | g(Rei) = (Rei)} is closed under multiplication and taking in-
verses.

(2) Show that if τi = j then τ Stab(i)τ−1 = Stab( j)
(3) Show that intersecting some parabolics gives block-diagonal parabolic.
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1.4. The dihedral group

Let Pn be the regular polygon with n sides. Let D2n = Aut(Pn) be the set of maps of the plan
that map Pn to itself.

• Label vertices 0,1, · · · ,n−1 (in fact, label them using Z/nZ).
• Then have a map c ∈ D2n (“cycle”), with c([i]) = [i+1]. Note that c j([i]) = [i+ j].
• And a map r ∈ D2n (“reflection” by the vertical axis) with r([i] =−[i]). Note that r2 = id

and that rcr = c−1.

LEMMA 59. Suppose g ∈ D2n fixes [0]. Then g is either id or r. Any g ∈ D2n can be written
uniquely in the form c jrε for j ∈ Z/nZ and ε ∈ Z/2Z.

PROOF. For the first claim if we fix [0] then we either fix [1], at which point we fix everything
by induction or we map [1] to [−1] at which point we reverse signs by induction.

For the second, suppose g(0) = j. Then c− jg fixes zero, so either c− jg = id or c− jg = r. For
uniqueness, suppose c jrε = ckrδ . Then c j−k = rδ−ε so c j−k fixes 0 so j ≡ k (n). This means that
also rε = rδ so ε = δ . �

COROLLARY 60. #D2n = 2n.

LEMMA 61. c jrεckrδ = c j+σkrε+δ where σ =+ if ε = 0 and σ =− if ε = 1.

PROOF. if ε = 0 clear. If ε = 1 we have

c jrckrrrδ = c j (rcr)k r1+δ = c j−kr1+δ .

�

REMARK 62. We saw that D2n is generated by r,c.
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CHAPTER 2

Groups and homomorphisms

2.1. Groups, subgroups, homomorphisms (Lecture 6)

2.1.1. Groups.

DEFINITION 63 (Group). A group is a pair (G, ·) where G is a set and · : G×G→G is a binary
operation satisfying:

(1) Associativity: ∀x,y,z ∈ G : (xy)z = x(yz).
(2) Neutral element: ∃e ∈ G∀x ∈ G : ex = x.
(3) Left inverse: ∀x ∈ G∃x̄ ∈ G : x̄x = e.

If, in addition, we have ∀x,y ∈ G : xy = yx we call the group commutative or abelian.

Fix a group G.

LEMMA 64 (Unit and inverse). (1) x̄ is a two-sided inverse: xx̄ = e as well.
(2) e is a two-sided identity: ∀x : xe = x.
(3) The identity and inverse are unique.
(4) ¯̄x = x.

PROOF. (1) For any x ∈ G we have x̄ = ex̄ = (x̄x) x̄ = x̄(xx̄). Multiplying on the left by ¯̄x we
see that

e = ¯̄xx̄ = ¯̄x(x̄(xx̄)) = ( ¯̄xx̄)(xx̄) = e(xx̄) = xx̄ .
(2) For any x ∈ G we have xe = x(x̄x) = (xx̄)x = ex = x.
(3) Let e′ be another left identity. Then e = e′e = e′. Let x̄′ be another left inverse. Then

x̄′x = e .

Multiplying on the right by x̄ we get
x̄′ = x̄ .

(4) We have ¯̄xx̄ = e. Now multiply on the right by x. �

NOTATION 65. We write x−1 for the unique inverse to x. Then
(
x−1)−1

= x.

REMARK 66. Because of this Lemma, quite often the axioms call for a two-sided identity and
a two-sided inverse.

COROLLARY 67 (Cancellation laws). Suppose xy = xz or yx = zx holds. Then x = y.

PROOF. Multiply by x−1 on the appropriate side. �

COROLLARY 68. e is the unique element of G satisfying xx = x.

PROOF. Multiply by x−1. �

EXAMPLE 69 (Examples of groups). (0) The trivial group.
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(1) Z, Sn, GLn(R).
(2) R+, additive group of vector space.
(3) Q×, R×, C×.
(4) Cn ' (Z/nZ,+), (Z/nZ)×.
(5) Symmetry groups.

(a) Graph automorphisms.
(b) Orthogonal groups.

EXAMPLE 70 (Non-groups). (1) (Z≥0,+).
(2) (Z,×), (Mn(R),+).
(3) (Z≥1,gcd). (Z≥1, lcm).

2.1.2. Homomorphisms.

PROBLEM 71. Are (Z/2Z,+) and ({±1} ,×) the same group? Are R+and R×>0 the same
group?

DEFINITION 72. Let (G, ·) ,(H,∗) be a groups. A (group) homomorphism from G to H is
function f : G→H such that f (x ·y) = f (x)∗ f (y) for all x,y ∈G. Write Hom(G,H) for the set of
homomorphisms.

EXAMPLE 73. Trivial homomorphism, sgn: Sn→ {±1}, det : GLn→ GL1, the quotient map
Z→ Z/NZ.

LEMMA 74. Let f : G→ H be a homomorphism. Then
(1) f (eG) = eH .
(2) f (g−1) = ( f (g))−1.

PROOF. (1) eG,eH are the unique solutions to xx = x in their respective groups.
(2) We have f (g) f (g−1) = f

(
gg−1)= f (eG) = eH so f (g), f (g−1) are inverses. �

DEFINITION 75. f ∈ Hom(G,H) is called an isomorphism if it is a bijection.

PROPOSITION 76. f is an isomorphism iff there exists f−1 ∈ Hom(H,G) such that f ◦ f−1 =
idH and f−1 ◦ f = idG.

PROOF. PS4 �

LEMMA 77. Let g : G→ H, f : H → K be group homomorphisms. Then f ◦ g : G→ K is a
group homomorphism.

PROOF. PS4. �

EXAMPLE 78. (Z/5Z)× and (Z/8Z)× are non-isomorphic groups of order 4.

PROOF. On the right we have g ·g = 1 for all g. On the left this fails. �

2.1.3. Subgroups.

LEMMA 79. Let (G, ·)be a group, and let H ⊂ G be non-empty and closed under · and under
inverses, or under (x,y) 7→ xy−1. Then e ∈ H and (H, · �H×H) is a group.
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PROOF. Let x ∈ H be any element. under either hypothesis we have e = xx−1 ∈ H. In the
second case we now have for any y ∈ H that y−1 = ey−1 ∈ H and hence that for any x,y ∈ H that
xy = x(y−1)−1 ∈H. Thus in any case · �H×H is H-valued, and satisfies the existential axioms. The
associative law is universal. �

DEFINITION 80. Such H is called a subgroup of G.

Group homomorphisms have kernels and images, just like linear maps.

DEFINITION 81 (Kernel and image). Let f ∈ Hom(G,H). Its kernel is the set Ker( f ) =
{g ∈ G | f (g) = eH}. Its image is the set Im( f ) = {h ∈ H | ∃g ∈ G : f (g) = h}.

PROPOSITION 82. The kernel and image of a homomorphism are subgroups of the respective
groups.

PROOF. (not given in class) Since f (eG) = eH we have eG ∈ Ker( f ) and eH ∈ Im( f ) so both
are non-empty. Let g,g′ ∈ Ker( f ). Then f (g−1) = f (g)−1 = e−1

H = eH and f (gg′) = f (g) f (g′) =
eHeH = eH .

Similarly let h,h′ ∈ Im( f ). Choose preimages g ∈ f−1(h) and g′ ∈ f−1(h′). Then h−1 =
f (g)−1 = f (g−1) ∈ Im( f ) and hh′ = f (g) f (g′) = f (gg′) ∈ Im( f ). �

QUESTION 83. Is every subgroup the kernel of some homomorphism?

EXERCISE 84. Is every subspace of a vector space the kernel of a linear map?

LEMMA 85. f in injective iff Ker f = {e}.

PROOF. (not given in class) Suppose f is injective. Then for g 6= e, f (g) 6= f (e) so Ker( f ) = e.
Conversely, suppose Ker( f ) = e and that f (g) = f (g′). Then

f (g−1g′) = f (g)−1 f (g′) = f (g)−1 f (g) = e

so g−1g′ ∈ Ker( f ). By hypothesis this means g−1g′ = e so g′ = g and f is injective. �

2.2. Examples (Lecture 7)

2.2.1. Isomorphism and non-isomorphism; orders of elements.

EXAMPLE 86. In (Z/8Z)× every element has x2 = 1. But this isn’t the case in (Z/5Z)× .

DEFINITION 87. Say [3] ∈ (Z/8Z)× has order 2 but [3] ∈ (Z/5Z)× has order 4.

2.2.2. Cyclic groups.

DEFINITION 88. Let G be a group, g ∈ G. We set g0 = e, for n ≥ 0 define by recursion
gn+1 = gng, and for n < 0 set gn =

(
g−1)−n.

PROPOSITION 89 (Power laws). For n,m∈Zwe have (1) gn+m = gngm (that is, the map n 7→ gn

is a group homomorphism (Z,+)→ G) and (2) (gn)m = gnm.

PROOF. PS3. �

LEMMA 90. The image of the homomorphism n 7→ gn is the smallest subgroup containing g,
denoted 〈g〉 and called the cyclic subgroup generated by g.

PROOF. The image is a subgroup and is contained in any subgroup containing g. �
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DEFINITION 91. A group G is cyclic if G = 〈g〉for some g ∈ G.

PROPOSITION 92. Let G be cyclic, generated by g, and let f (n) = gn be the standard homo-
morphism. Then either:

(1) Ker f = {0}and f : Z→ G is an isomorphism.
(2) Ker f = nZand f induces an isomorphism Z/nZ→ G.

NOTATION 93. The isomorphism class of Z is called the infinite cyclic group. The isomor-
phism class of (Z/nZ,+) is called the cyclic group of order n and denoted Cn.

REMARK 94. The generator isn’t unique (e.g. 〈g〉= 〈g−〉).

PROOF. f is surjective by definition. If Ker f = {0} then f is injective, hence an isomorphism.
Otherwise, by Proposition 7 we have Ker f = nZ for some n. We now define f̄ : Z/nZ→ G by
f̄ ([a]n) = ga.

• This is well-defined: if [a]n = [b]n then a−b = cn for some c and then by the power laws,
f (a) = f (b+ cn) = f (b) f (cn) = f (b) since cn ∈ Ker f .

• This is a homomorphism: f̄ ([a]n +[b]n)= f̄ ([a+b]n)= f (a+b)= f (a) f (b)= f̄ ([a]n) f̄ ([b]n).
• This is injective: [a]n ∈ Ker f̄ ⇐⇒ f (a) = e ⇐⇒ a ∈ nZ ⇐⇒ [a]n = [0]n.

�

DEFINITION 95. The order of g ∈ G is the size of 〈g〉.

COROLLARY 96. The order of g is the least positive m such that gm = e (infinity if there is no
such m).

OBSERVATION 97. If G is finite, then every g ∈ G has finite order.

EXAMPLE 98. In GL2(R),
(

1 1
1

)
has infinite order while

(
1

1

)
has order 2 and

(
−1

1

)
has order 4.

LEMMA 99. If G is finite, and H ⊂ G is non-empty and closed under (x,y) 7→ xy it is a sub-
group.

PROOF. If g has order n then g−1 = gn−1 can be obtained from g by repeated multiplication.
�

2.2.3. “Philosophy”: automorphism groups. X set with “structure”. Then Aut(X)=
{

g : X → X | g,g−1 "preserve the structure"
}

is a group. Use it to learn information about X .

EXAMPLE 100. X is Rn with Euclidean distance. The automorphism group is the isometry
group of Euclidean space.

X a graph (more below)
G a group. Aut(G) = Hom(G,G)∩SG.

2.2.4. Dihedral groups (see practice problems).

DEFINITION 101. A (simple) graph is an ordered pair Γ = (V,E) where V is a set (“vertices”)
and E ⊂V ×V is a set (“edges”) such that (x,x) /∈ E and (x,y) ∈ E↔ (y,x) ∈ E.

Example: Kn, cycle ...
17



DEFINITION 102. An automorphism of Γ is a map f ∈ SV (Γ) such that (x,y)∈E↔ ( f (x), f (y))∈
E.

LEMMA 103. Aut(Γ)< SΓ is a subgroup.

EXAMPLE 104. Γ = Kn, Aut(Γ) = Sn.

We concentrate on the cycle.

DEFINITION 105. D2n = Aut(n-cycle).

This contains n rotations (a subgroup isomorphic to Cn), n reflections.

LEMMA 106. |D2n|= 2n.

PROOF. Enough to give an upper bound. Label the cycle by Z/nZ. Let f ∈ D2n and suppose
that f ([0]) = a. Then f ([1]) ∈ {a+1,a−1} and this determines the rest. �

LEMMA 107. Cn < D2n is normal.

2.3. Subgroups and coset spaces (Lecture 8)

2.3.1. The lattice of subgroups; generation.

LEMMA 108. The intersection of any family of subgroups is a subgroup.

DEFINITION 109. Given S⊂G, the subgroup generated by S, is the subgroup 〈S〉=
⋂
{H < G | S⊂ G}.

Note that this is the smallest subgroup of G containing S.

DEFINITION 110. A word in S is an expression ∏
r
i=1 xεi

i where xi ∈ S and εi ∈ {±1}.

By induction on r, if H is a subgroup containing S and w is a word in S of length r then w ∈H.

PROPOSITION 111. 〈S〉 is the set of elements of G expressible as words in S.

PROOF. Let W be the set of elements expressible as words. Then W is non-empty (via the
trivial word) and is closed under products (concatenation) and inverses (reverse order exponents),
so it is a subgroup; W evidently contains S (the words of length 1) so W ⊃ 〈S〉. On the other hand
we just argued that W ⊂ 〈S〉.f �

2.3.2. Coset spaces and Lagrange’s Theorem. Fix a group G and a subgroup H.
Define a relation on G by g≡L g′ (H) iff ∃h ∈ H : g′ = gh iff g−1g′ ∈ H. Example: g≡L e(H)

iff g ∈ H.

LEMMA 112. This is an equivalence relation. The equivalence class of g is the set gH.

DEFINITION 113. The equivalence classes are called left cosets.

REMARK 114. Equivalently, we can define right cosets Hg which are the equivalence classes
for the relation g′ ≡R g(H)↔ g′g−1 ∈ H.

DEFINITION 115. Write G/H for the coset space G/≡L (H) (this explains the notation Z/nZ
from before). The index of H in G, denoted [G : H], is the cardinality of G/H.

LEMMA 116. The map gH 7→ Hg−1 is a bijection between H\G and G/H. In particular, the
index does not depend on the choice of left and right cosets.
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THEOREM 117 (“Lagrange’s Theorem”). |G|= [G : H]×|H|. In particular, if G is finite then
|H| divides |G|.

PROOF. Let R⊂G be a system of representatives for G/H, that is a set intersecting each coset
at exactly one element. The function R→G/H given by r 7→ rH is a bijection, so that |R|= [G : H].
Finally, the map R×H→ G given by (r,h) 7→ rh is a bijection. �

COROLLARY 118. Let G be a finite group. Then the order of every g ∈ G divides the order of
G. In particular, g#G = e.

PROOF. Let g have order m. Then m = |〈g〉| is the order of a subgroup of G. Moreover,
g#G = (gm)#G/m = e. �

REMARK 119. Lagrange stated a special case in 1770. The general case is probably due to
Galois; a proof first appeared in Gauss’s book in 1801.

FACT 120. It is a Theorem of Philip Hall that if G is finite, then H\G and G/H always have a
common system of representatives.

EXAMPLE 121. Let p be prime. Then every group of order p is isomorphic to Cp.

PROOF. Let G have order p, and let g ∈ G be a non-identity element, say of order k = |〈g〉|.
Then k|p, but k 6= 1 (g 6= e) so k = p and 〈g〉= G. �

EXAMPLE 122 (Fermat’s Little Theorem; Euler’s Theorem). Let a ∈ Z. Then:
(1) If gcd(a, p) = 1 then ap−1 ≡ 1(p).
(2) ap ≡ a(p).
(3) If gcd(a,n) = 1 then aφ(n) ≡ 1(n).

PROOF. For (1), (Z/pZ)× is a group of order p−1. (2) follows from (1) unless [a] = 0, when
the claim is clear. (3) is the same for (Z/nZ)×, a group of order φ(n). �

2.4. Normal subgroups and quotients (Lectures 9–10)

2.4.1. Normal subgroups (Lecture 9). HW: Every subgroup is normal in its normalizer.
We will answer Question 83. To start with, we identify a constraint on kernels.

LEMMA 123. Let f ∈ Hom(G,H) and let g ∈ G. Then gKer( f )g−1 = Ker( f ).

PROOF. Let g ∈ G, n ∈ Ker( f ). Then f
(
gng−1) = f (g) f (n) f (g−1) = f (g) f (g)−1 = e so

gng−1 ∈ Ker f as well. �

DEFINITION 124. Call N < G normal if gN = Ng for all g ∈G, equivalently if gNg−1 = N for
all g ∈ G. In that case we write NCG.

LEMMA 125. Enough to check gNg−1 ⊂ N.

PROOF. PS5 Practice problem P4. �

REMARK 126. Normality is best verified using Lemma 123 or Lemma 125.

EXAMPLE 127. {e} ,G always normal; Any subgroup of an abelian group.
SLn(R)CGLn(R) (kernel of determinant), AnCSn (kernel of sign). Translations in Isom(En).

LEMMA 128. The intersection of any family of normal subgroups is normal.

DEFINITION 129. The normal closure of S<G is the normal subgroup〈S〉N =
⋂
{NCG | S⊂ N}.
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2.4.2. Quotients.

LEMMA 130. The subgroup N < G is normal iff the relation ≡ (N) respects products and
inverses.

PROOF. Suppose N is normal, and suppose that g≡ g′ (N) and that h≡ h′ (N). Then

(gh)−1 (g′h′)= h−1 (g−1g′
)

h′ =
[
h−1 (g−1g′

)
h
](

h−1h′
)
∈ N .

Also, g≡L g′ (N) iff g−1 ≡R (g′)−1 (N) but if N is normal then the two relations are the same.
The converse is practice problem 5 of PS5. �

COROLLARY 131. Defining group operations via representatives endows G/N with the struc-
ture of a group.

DEFINITION 132. This is called the quotient of G by N.

LEMMA 133. The quotient map g 7→ gN is a surjective group homomorphism with kernel N.

EXAMPLE 134. Z is commutative, so every subgroup is normal, and we get a group Z/nZ.

Motivation: “kill off” the elements of N.

2.4.3. Isomorphism Theorems (Lecture 10).

THEOREM 135 (First isomorphism theorem). Let f ∈Hom(G,H) and let K = Ker( f ). Then f
induces an isomorphism G/K→ Im( f ).

PROOF. Define f̄ (gK) = f (g). This is well-defined: if gK = g′K then g′ = gk for some k ∈ K
and then f (g′) = f (gk) = f (g) f (k) = f (g) since k ∈K. It is a group homomorphism by definintion
of the product structure on G/K. The image is the same as f by construction. As to the kernel,
f̄ (gK) = eH iff f (g) = eH iff g ∈ K iff gK = K = eG/K . �

EXAMPLE 136. det : GLn(F)→ F× induces an isomorphism GLn(F)/SLn(F)' F×.

REMARK 137. Today emphasize applications of theorems by proving other theorems with
them.

THEOREM 138 (Second isomorphism theorem). Let N,H < G with N normal. Then N ∩H is
normal in H, and the natural map H→ HN induces an isomorphism

H/(H ∩N)
'−→ HN/N .

PROOF. Composing the inclusion ι : H → HN and the quotient map π : HN → HN/N gives
a homomorphism f = π ◦ ι : H → HN/N. f is surjective: we have (hn)N = h(nN) = hN for any
h ∈H, n ∈ N so every coset has a representative in the image of ι . We now compute its kernel. Let
h ∈ H. Then h ∈ Ker f iff f (h) = eHN/N iff π(h) = N iff hN = N iff h ∈ N iff h ∈ N ∩H. Thus
Ker f = H ∩N and the claim follows from the previous Theorem. �

THEOREM 139 (Third isomorphism theorem). Let K < N < G be subgroups with K,N normal
in G. Then N/K is normal in G/K and there is a natural isomorphism G/N→ (G/K)/(N/K).

PROOF. Let nK ∈ N/K and let gK ∈ G/K. Then (gK)(nK)(gK)−1 def
= gng−1K ∈ N/K so

N/KCG/K. Now Let f be the composition of the quotient maps G→ G/K → (G/K)/(N/K).
Then f is surjective (composition of surjective maps) and g ∈ Ker f iff gK ∈ N/K iff g ∈ N. �
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2.4.4. Simplicity of An.

DEFINITION 140. G is simple if it has no normal subgroups except for {e} ,G (“prime”)

LEMMA 141 (Generation and conjugacy in An). The pairs (123),(145) and (12)(34),(12)(35)
are conjugate in A5.

PROOF. Conjugate by (24)(35) and (345) respectively. �

LEMMA 142 (Generation and conjugacy in An). Let n≥ 5.
(1) All cycles of length 3 are conjugate in An and generate the group..
(2) All elements which are a product of two disjoint transpositions are conjugate in An and

generate the group.

PROOF. PS3 �

THEOREM 143. An is simple if n≥ 5.

PROOF. Let NCAn be normal and non-trivial and let σ ∈N \{id} have minimal support, wlog
{1, . . . ,k}.
Case 1. k = 1 would make σ = id.
Case 2. k = 2 would make σ a transposition.
Case 3. k = 3 makes σ a 3-cycle. By Lemma 142(1), N contains all 3-cycles and thus equals

An.
Case 4. k = 4 makes σ of the form (12)(34) since 4-cycles are odd. We are then done by Lemma

142(2).
Case 5. k ≥ 5 and σ has a cycle of length at least 3. We may then assume σ(1) = 2, σ(2) = 3

and let γ = (345)σ(345)−1σ−1 ∈ N. Then γ fixes every point that σ does, and also
γ(2) = 2, but γ(3) = 4, so γ 6= id – a contradiction.

Case 6. k ≥ 5 and σ is a product of disjoint transpositions (necessarily at least 4), say σ =
(12)(34)(56)(78) · · · . Then the same γ again fixes every point that σ fixes, and also 1,2
– but it still exchanges 7,8 – another contradiction.

�

2.4.5. Alternative proofs.
2.4.5.1. (taken from Rotman’s book).
(1) Anis generated by 3-cycles if n≥ 5.
(2) A5 is simple:

(a) The conjugacy classes of (123) and (12)(34) generate A5.
(b) The other conjugacy classes id, (12345) (13542) have sizes 1,12,12 which do not

add up to a divisor of 60.
(3) A6 is simple:

(a) Let N CA6 be normal and non-trivial. For i ∈ [6], let Pi = StabA6(i) ' A5. Then
N ∩Pi is normal in Pi. If this is non-trivial then by (1), Pi ⊂ N and hence N contains
a 3-cycle, so N = A6. Otherwise every element of N has full support.

(b) The possible cycle structures are (123)(456) and (12)(3456). In the second case the
square is a non-trivial element of N with a fixed point. In the first case conjugate with
(234) to get a fixed point.
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(4) For n ≥ 6 let NCAn be normal. Let σ ∈ N be non-identity with, say, σ(1) = 2. Then
κ=(234) does not commute with σ (κσ(1) = 3 but σκ(1) = 2).

(5) The element γ = [σ ,κ] = σκσ−1κ−1 = σ
(
κσ−1κ−1) ∈ N is also non-identity. But

writing this element as
(
σκσ−1)κ−1we see that it is a product of two 3-cycles and hence

has support of size at most 6. This therefore belongs to a copy A∗ of A6 inside An. But
N∩A∗ is normal, and A6is simple. Thus N contains A∗ and in particular a 3-cycle.

2.4.5.2. Induction.
(1) A5 is simple: see above.
(2) Suppose An simple, and let NCAn+1 be non-trivial. If N ∩Pi is non-trivial for i ∈ [n+1]

then Pi ⊂ N so N contains a 3-cycle and N = An+1. Otherwise every element of N has full
support.

(3) Let σ ∈ N be non-trivial, say σ(1) = 2, and σ(3) = 4 (move every element!). Let τ =
(12)(45). Then (στ)(3) = 4 while τσ(3) = 5, so στσ−1τ−1 ∈ N is non-trivial and fixes
1,2 – a contradiction.
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CHAPTER 3

Group Actions

3.1. Group actions (Lecture 11)

DEFINITION 144 (Group action). An action of the group G on the set X is a binary operation
· : G×X → X such that eG · x = x for all x ∈ X and such that g · (h · x) = (gh) · x for all g,h ∈ G,
x ∈ X . A G-set is a pair (X , ·) where X is a set and · is an action of G on X . We sometimes write
G y X .

We discus Examples of group actions

(0) For any X ,G we have the trivial action g · x = x for all x.
(1) SX acting on X . Key example.
(2) F field, V F-vector space. Then scalar multiplication is an action F×yV .

• Orbit of non-zero vector is (roughly) the 1d subspace it spans.
(3) X set with “structure”, Aut(X) =

{
σ ∈ SX | σ ,σ−1 "preserve the structure"

}
acts on X .

• Can always restrict actions: if · : G×X → X is an action then · �H×X is an action of
H.

(a) D2n acting on cycle, inside of there’s Cn acting on te cycle; Aut(Γ) acting on Γ.
(b) GLn(R) acting on Rn, GL(V ) acting on V .
(c) G group; Aut(G) acting on G.

(4) Induced actions (see Problem Set): suppose G acts on X ,Y .
(a) G acts on Y X by (g · f )(x) def

= g ·
(

f
(
g−1 · x

))
(in particular, action of G on the vector

space FX where X is a G-set).
(b) G acts on P(X) by g ·A = {g ·a | a ∈ A}.
(c) etc.

3.1.1. The regular action and the homomorphism picture. The regular action: G acting on
itself by left multiplication: For g ∈ G and x ∈ G let g · x = gx. Action by group axioms.

We now obtain a different point of view on actions. For this let G act on X , fix g ∈ G and
consider the function σg : X → X given by

σg(x)
def
= g · x .

LEMMA 145 (Actions vs homomorphisms). In increasing level of abstraction:

(1) σg ∈ SX for all g ∈ G.
(2) g 7→ σg is a group homomorphism homomorphism G→ SX .
(3) The resulting map from group actions to Hom(G,SX) is a bijection

{actions of G on X}↔ Hom(G,SX) .
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PROOF. We first show σg ◦σh = σgh. Indeed for any x ∈ X :

(σg ◦σh)(x) = σg (σh(x)) def of ◦
= g · (h · x) def of σg,σh

= (gh) · x def of gp action

= σgh(x) def of σgh .

This doesn’t give (2) because we don’t yet know (1). For that we use the axiom that σe = id to see
that

σg ◦σg−1 = id = σg−1 ◦σg

and hence that σg ∈ SX at which point we get (1),(2).

For (3), if σ ∈ Hom(G,SX) then set g · x def
= (σ(g))(x). This is indeed an action, and evidently

this is the inverse of the map constructed in (2). �

REMARK 146. This Lemma will be an important source of homomorphisms, and therefore of
normal subgroups (their kernels).

We now get the first payoff of our theory:

THEOREM 147 (Cayley 1878). Every group G is isomorphic to a subgroup of SG. In particular,
every group of order n is isomorphic to a subgroup of Sn.

PROOF. Consider the left-regular action of G on itself. This corresponds to a homomorphism
LG : G→ SG. We show that Ker(LG) = {e}, so that LG will be an isomorphism onto its image. For
that let g ∈ Ker(LG). Then LG(g) = idG, and in particular this means that g fixes e: g · e = e. But
this means g = e and we are done. �

REMARK 148. Can make this quantitative: [2] asks for the minimal m such that G is isomor-
phic to a subgroup of Sm.

LEMMA 149. For any prime p, Cp is isomorphic to a subgroup of Sn iff n≥ p.

PROOF. If n ≥ p then Sn includes a p-cycle. Conversely, by Lagrange’s Theorem 117, if Sn
has a subgroup isomorphic to Cp then p|n!. Since p is prime this means p|k for some k ≤ n so that
p≤ k ≤ n. �

REMARK 150. Johnson shows that if G has order n and embeds in Sn but no smaller Sm then
either G 'Cp or G has order 2k for some k, and for each such order there is a unique group with
the property.

3.2. Conjugation (Lecture 12)

This is another action on G on itself, but it’s not the regular action!

3.2.1. Conjugacy of elements.

DEFINITION 151. For g ∈ G, x ∈ G set gx = gxg−1. Set γg(x) = gxg−1.

LEMMA 152. This is a group action of G on itself, and it is an action by automorphisms:
γg ∈ Aut(G).

PROOF. Check. �
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DEFINITION 153. Say “x is conjugate to y” if there is g ∈ G such that gx = y.

LEMMA 154. This is an equivalence relation.

PROOF. See PS3, problem 2(a). �

DEFINITION 155. The equivalence classes are called conjugacy classes. Write G\X for the set
of equivalence classes.

EXAMPLE 156. The class of e is {e}. More generally, the class of x is {x} iff x∈ Z(G) (proof).

REMARK 157. Why is conjugacy important? Because
(1) The action is by automorphisms, so conjugate elements have identical group-theoretic

properties (same order, conjugate centralizers etc).
(2) These automorphisms are readily available.

In fact, the map g 7→ γg is a group homomorphism G→ Aut(G) (this is Lemma 145(2)).

DEFINITION 158. The image of this homomorphism is denoted Inn(G) and called the group
of inner automorphisms.

EXERCISE 159. The kernel is exactly Z(G), so by Theorem 135, Inn(G) ' G/Z(G). Also, if
f ∈ Aut(G) then f ◦ γg ◦ f−1 = γ f (g) so Inn(G)CAut(G).

DEFINITION 160. Call Out(G)
def
= Aut(G)/ Inn(G) the outer automorphism group of G.

EXAMPLE 161. Aut(Zd)'GLd(Z) but all inner automorphisms are trivial (the group is com-
mutative).

On the other hand, if #X ≥ 3 then Inn(SX) = SX (the center is trivial).

FACT 162. Out(Sn) = {e} except that Out(S6)'C2.

LEMMA 163. There is a bijection between the conjugacy class of x and the quotient G/ZG(x).
In particular, the number of conjugates of x is [G : ZG(x)].

PROOF. Map gZG(x)→ gx. This is well-defined: if g′ = gz with z ∈ Z then g′x = gzx = g(zx) =
gx. It is surjective: the conjugate gx is the image of gZG(x), and finally if gx= g′x then x= g−1

(g′x)=
g−1g′x so g−1g′ ∈ ZG(x) and g′ZG(x) = g′Z(x). �

THEOREM 164 (Class equation). Let G be finite. Then

#G = #Z(G)+∑
{x}

[G : ZG(x)] ,

where the sum is over the non-central conjugacy classes.

PROOF. G is the disjoint union of the conjugacy classes. �

3.2.2. Conjugacy of subgroups. We consider a variant on the previous construction.

DEFINITION 165. For g ∈ G, H < G set gH = gHg−1 = γg(H).

LEMMA 166. This is a group action of G on its set of subgroups.
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PROOF. Same: eH = eHe−1 = H, and
g
(

hH
)
= g

(
hHh−1)g−1 = (gh)H(gh)−1 = ghH .

�

EXAMPLE 167. The class of H is {H} iff H is normal in G.

LEMMA 168. Conjugacy of subgroups is an equivalence relation.

PROOF. Same. �

LEMMA 169. There is a bijection between the conjugates of H and G/NG(H).

PROOF. Same. �

3.3. Orbits, stabilizers and counting (Lecture 13)

We now observe that the results of Section 3.2 depend only on the fact that conjugation is a
group action, and not on the details of the action. The ultimate result is Proposition 176.

3.3.1. Orbits, stabilizers, and the orbit-stabilizer Theorem. Fix a group G acting on a set
X .

DEFINITION 170. Say x,y ∈ X are in the same orbit if there is g ∈ G such that gx = y.

LEMMA 171. This is an equivalence relation.

PROOF. Repeat. �

DEFINITION 172. The equivalence classes are called orbits.

REMARK 173. Why orbits? Consider action of R+ on phase space by time evolution (idea of
Poincaré).

DEFINITION 174. Write G · x or O(x) for the orbit of x ∈ X . Write G\X for the set of orbits.
For x ∈ X set StabG(x) = {g ∈ G | g · x = x}.

LEMMA 175. StabG(x) is a subgroup.

PROOF. e · x = x, if g · x = x then g−1 · x = x and if gx = x and hx = x then (hg)x = h(gx) =
hx = x. �

PROPOSITION 176 (Orbit-Stabilizer Theorem). There is a bijection between the orbit O(x)⊂
X and G/StabG(x). Moreover, the stabilizers of an orbit of G is a conjugacy class in of subgroups.

PROOF. Same. �

COROLLARY 177 (General class equation). We have

#X = ∑
O(x)∈G\X

[G : StabG(x)] .

PROOF. X is the disjoint union of the orbits. �

DEFINITION 178. Fix(G) = {x ∈ X | StabG(x) = G}.

COROLLARY 179. Suppose G has order pk and X is finite. Then #X ≡ #Fix(X) (p).
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PROOF. Every non-fixed point is an orbit of size at least 2, hence its stabilizer is a non-1 divisor
of pk so it is divisible by p. �

EXAMPLE 180. Zagier’s slick proof of Fermat’s Theorem
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UBC Math 322; notes by Lior Silberman

3.4. Actions, orbits and point stabilizers (handout)

In this handout we gather a list of examples of group actions and determine the orbits and the
stabilizers.

3.4.1. G acting on G/H. Let G be a group, H a subgroup. The regular action of G on itself
induces an action on the subsets of G (see Problem Set 6).

• Let C = xH be a coset in G/H and let g ∈ G. Then gC is also a coset: gC = g(xH) =
(gx)H. Accordingly the subset G/H ⊂ P(G) is invariant and we can restrict the action of
G to get an action on the invariant subset G/H.

(1) Orbits: for any two cosets xH,yH let g = yx−1. Then g(xH) = yx−1xH = yH so there is
only one orbit.
• We say the action is transitive.

(2) Stabilizers: {g | gxH = xH} =
{

g | gxHx−1 = xHx−1} =
{

g | g ∈ xHx−1} = xHx−1, so
StabG (xH) = xHx−1 – in other words, the point stabilizers are exactly the conjugates of
H.

PROPOSITION 181. Let G act on X. For x ∈ X let H = StabG(x) and let f : G/H →O(x) be
the bijection f (gH) = gx of Proposition 176. Then f is a map of G-sets: for all g ∈ G and coset
C ∈ G/H we have

f (g ·C) = g · f (C)

where on the left we have the action of g on C ∈ G/H and on the left we have the action of g on
f (C) ∈ O(x)⊂ X.

3.4.2. GLn(R) acting on Rn.
• For a matrix g ∈ G = GLn(R) and vector v ∈ Rn write g · v for the matrix-vector product.

This is an action (linear algebra).

(1) Orbits: We know that for all g, g0 = 0 so {0} is one orbit. For all other non-zero vectors
we have:

CLAIM 182. Let V be a vector space, u,v ∈V be two non-zero vectors. Then there is
a linear map g ∈ GL(V ) such that gu = v.

We need a fact from linear algebra

FACT 183. Let V,W be vector spaces and let {ui}i∈I be a basis of V . Let {wi}i∈I be
any vectors in W. Then there is a unique linear map f : V →W such that f (ui) = wi.

PROOF OF CLAIM. Complete u,v to a bases {ui}i∈I ,{vi}i∈I (u1 = u, v1 = v). There
is a unique linear map g : V →V such that gui = vi (because {ui} is a basis) and similarly
a unique map h : V →V such that hvi = ui. But then for all i we have (gh)vi = vi = Idvi
and (hg)ui = ui = Idui, so by the uniqueness prong of the Fact we have gh = Id = hg and
g is invertible, that is g ∈ GL(V ). �
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(2) Stabilizers: clearly all matrices stabilize zero. For other vectors we compute:

StabGLn(R) (en) =

g | g


0
...
0
1

=


0
...
0
1


=

{
g =

(
h 0
u 1

)
| h ∈ GLn−1(R), u ∈ Rn−1

}
.

(more precisely the stabilizer consists of all matrices g =

(
h 0
u 1

)
where h ∈ Mn−1(R),

but it is not hard to show that in this case g is invertible iff h is).

EXERCISE 184. Show that the block-diagonal matrices M =

{(
h 0
0 1

)
| h ∈ GLn−1(R)

}
are a

subgroup of GLn(R) isomorphic to GLn−1(R). Show that the matrices N =

{(
In−1 0

u 1

)
| u ∈ Rn−1

}
are a subgroup isomorphic to

(
Rn−1,+

)
. Show that StabGLn(R) (en) is the semidirect product

MnN.

3.4.3. GLn(R) acting on pairs of vectors (assume n≥ 2 here).

EXERCISE 185. If G acts on X and G acts on Y then setting g · (x,y) = (g · x,g · y) gives anthe
action action of G on X×Y .

We study the example where G = GLn(R) and X = Y = Rn.
(1) Orbits:

(a) Clearly (0,0) is a fixed point of the action.
(b) If u,v 6= 0 the previous discussion constructed g such that gu= v and hence g ·(u,0)=

(v,0) and g · (0,u) = (0,v). Since G · (u,0) ⊂ Rn×{0}, we therefore get two more
orbits: {(u,0) | u 6= 0} and {(0,u) | u 6= 0}.

(c) We now need to understand when there is g such that g · (u1,u2) = (v1,v2) when
all vectors are nonzero. When studying the action on Rn itself we saw that if the
pairs {u1,u2}, {v1,v2} are each linearly independent then completing both to bases
will provide such g. Conversely, if {u1,u2} are independent then so are {gu1,gu2} for
any invertible g (g preserves the vector space structure hence linear algebra properties
like linear independence). We therefore have an orbit

{(u1,u2) | the vectors are linearly independent} .
(d) The case of linear dependence remains, so we need to consider the orbit of (u1,u2)

where both are non-zero and u2 = au1 for some scalar a, necessarily non-zero. In that
case g · (u1,u2) = (gu1,g(au1)) = (gu1,a(gu1)) so the orbit of (u1,au1) is contained
in

{(v,av) | v 6= 0} .
Conversely, this is an orbit because if u1,v is are both non-zero there is g for which
gu1 = v and then g · (u1,au1) = (v,av).
Summary: the orbits are {(0,0)}, {(u,0) | u 6= 0},{(0,u) | u 6= 0}, {(u1,u2) | dimSpanF {u1,u2}= 2},
and for each a ∈ F× the set {(u1,au1) | u1 6= 0}.

(2) Point stabilizers:
(a) (0,0) is fixed by the whole group.
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(b) g(u,0) = (u,0) iff gu = u, so this is the case solved before. Similarly for g · (u,au) =
(u,au) which holds iff gu = u.

(c) g
(
en−1,en

)
=
(
en−1,en

)
holds iff the last two columns of g are en−1,en so

StabGLn(R)
(
en−1,en

)
=

{
g =

(
h 0
y I2

)
| h ∈ GLn−2(R),y ∈M2,n−2(R)

}
.

EXERCISE 186. Show that the block-diagonal matrices M =

{(
h 0
0 I2

)
| h ∈ GLn−2(R)

}
are a

subgroup of GLn(R) isomorphic to GLn−2(R). Show that the matrices N =

{(
In−2 0

y 1

)
| y ∈M2,n−2(R)

}
'

are a subgroup isomorphic to
(
R2(n−2),+

)
. Show that StabGLn(R)

(
en−1,en

)
is the semidirect prod-

uct MnN.

3.4.4. GLn(R) and PGLn(R) acting on Pn−1(R).

DEFINITION 187. Write Pn−1(R) for the set of 1-dimensional subspaces of Rn (this set is
called “projective space of dimension n−1”).

• Let L ∈ Pn−1(R), so that L is a line in Rn and let g ∈ GLn(R). Then g(L) = {gv | v ∈ L}
is also a line (the image of a subspace is a subspace, and invertible linear maps preserve
dimension), and this defines an action of GLn(R) on Pn−1(R) (a restriction of the action
of GLn(R) on all subsets of Rn to the set of subsets which are lines).

(1) The action is transitive: suppose L = Span{u} and L′ = Span{v} for some non-zero
vectors u,v. Then any element g such that gu = v will also map gL = L′.

(2) Suppose L = Span{en}. Then gL = L means gen spans L, so gen = aen for some non-zero
a. It follows that

StabGLn(R) (F · en) =

{
g =

(
h 0
u a

)
| h ∈ GLn−1(R),a ∈ R× u ∈ Rn−1

}
.

• Repeat Exercize 184 from before, now with M =

{(
h 0
0 a

)
| h ∈ GLn−1(R),a ∈ R×

}
'

GLn−1(R)×R×.
This can be generalized. For the same reason as for lines, the group GLn(R) acts on the Grass-
mannian

Gr(n,k) = {L⊂ Rn | L is a subspace and dimRL = k} .
The action is still transitive (for any L,L′, take bases {ui}

k
i=1 ⊂ L, {vi}

k
i=1 ⊂ L′, complete both to

bases of Rn and get a map), and the stabilizer will have the form M nN with M ' GLn−k(R)×
GLk(R) and N '

(
Mk,n−k(R),+

)
.

3.4.5. O(n) acting on Rn. Let the orthogonal group O(n) = {g ∈ GLn(R) | gtg = Id} act on
Rn.

• This a different kind of restriction – we restrict the action of GLn(R) to a subgroup, but
the set is still the whole of Rn.

(1) Orbits: we know that if g ∈ O(n) and v ∈ Rn then ‖gv‖ = ‖v‖. Conversely, for each
a≥ 0 {v ∈ Rn | ‖vv‖= a} is an orbit. When a = 0 this is clear (just the zero vector) and
otherwise let u,v both have norm a. Then u1 =

1
avu, v1 =

1
av are both unit vectors which
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we can separately complete to orthonormal bases {ui} ,{vi} respectively. Then the unique
invertible linear map g∈GLn(R) such that gui = vi is orthogonal (linear algebra exercize).
We thus obtain g ∈ O(n) such that gu1 = v1 and hence gu = g(au1) = agu1 = av1 = v.

3.4.6. Isom(Rn) acting on Rn. Let Isom(Rn) be the Euclidean group: the group of all rigid
motions of Rn (maps f : Rn→ Rn which preserve distance, in that ‖ f (u)− f (v)‖= ‖u− v‖).

(1) The action is transitive: for any fixed a ∈ Rn the translation Tax = x+ a preserves dis-
tances, making it an element of Isom(Rn), and for all u,v we have Tv−u(u) = v.

(2) The point stabilizer of zero is exactly the orthogonal group!
PROOF. We know that orthogonal maps preserve distances. Conversely let f ∈ Isom(Rn)

satisfy f (0) = 0. Then f preserves distance from the origin:

‖ f (x)‖= ‖ f (x)−0‖= ‖ f (x)− f (0)‖= ‖x−0‖= ‖x‖ ;

the difficulty is to show that f is a linear map. To showing that f preserves inner products
first note that since

∥∥x− y
∥∥2

= ‖x‖2 +
∥∥y
∥∥2−2

〈
x,y
〉

we have the polarization identity〈
x,y
〉
=

1
2

[
‖x‖2 +

∥∥y
∥∥2−

∥∥x− y
∥∥2
]
.

Thus 〈
f (x), f (y)

〉
=

1
2

[
‖ f (x)‖2 +

∥∥ f (y)
∥∥2−

∥∥ f (x)− f (y)
∥∥2
]

=
1
2

[
‖x‖2 +

∥∥y
∥∥2−

∥∥x− y
∥∥2
]

=
〈
x,y
〉
.

Next let {ei}
n
i=1 be the standard orthonormal basis. Since f preserves inner products,

ui = f (ei) also form an orthonormal basis, and there is a unique linear map g ∈O(n) such
that gei = ui. We conclude by showing that f = g. For this let x ∈ Rn and let ai = 〈x,ei〉.
Then x = ∑i aiei and since

〈 f (x),ui〉= 〈 f (x), f (ei)〉= 〈x,ei〉= ai

we have

f (x) = ∑
i

aiui = ∑
i

aigei = g

(
∑

i
aiei

)
= gx .

�

EXERCISE 188. Let V =
{

Ta | a ∈ Rn} ⊂ Isom(Rn) be the group of translations. This is a
subgroup isomorphic to Rn, and Isom(Rn) is the semidirect product O(n)nV .

EXERCISE 189. The orbits of Isom(Rn) on the space of pairs Rn×Rn are exactly the sets
Da =

{
(x,y) |

∥∥x− y
∥∥= a

}
(a≥ 0).
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CHAPTER 4

p-Groups and Sylow’s Theorems

4.1. p groups (Lecture 14)

We start with a partial converse to Lagrange’s Theorem.

THEOREM 190 (Cauchy 1845). Suppose that p|#G. Then G has an element of order p.

PROOF. Let G be a minimal counterexample. Consider the class equation

#G = #Z(G)+
h

∑
i=1

[G : ZG(gi)]

{gi}h
i=1 are representatives for the non-central conjugacy classes. Then ZG(gi) are proper sub-

groups, so by induction their order is prime to p. It follows that their index is divisible by p, so
p|#Z(G) as well, and this group is non-trivial. Now let x ∈ Z(G) be non-trivial. If the order of x
is divisible by p we are done. Otherwise, the subgroup N = 〈x〉 is central, hence normal, and of
order prime to p. Then Z/N has order divisible by p, and by induction an element ȳ of order p.
Let y ∈ Z be any preimage. Then the order of y in Z is a multiple of the order of y in Z/N, hence a
multiple of p and we are done. �

Here’s another proof:

PROOF. Let X =
{

g ∈ Gp |∏p
i=1 gi = e

}
. Then #X = (#G)p−1 is divisible by p. The group Cp

acts on X by permuting the coordinates. Let Y ⊂ X be the set of fixed points. Then #Y ≡ #X (p),
so p|#Y . But Y is in bijection with the set of elements of order divisible by p, which is non-empty
since e is there. �

COROLLARY 191. The number of elements of order exactly p is congruent to −1 mod p (in
particular, it is non-zero).

COROLLARY 192. Let G be a finite group, p a prime. Then every element of G has order a
power of p iff the order of G is a power of p.

DEFINITION 193. Call G a p-group if every element of G has order a power of p.

Observe that if G is a finite p-group then the index of every subgroup is a power of p. It
follows that every orbit of a G-action has either size 1 or size divisible by p. By the class equation
we conclude that if G is a finite p-group and X is a finite G-set, we have:

(4.1.1) |X | ≡ |{x ∈ X | StabG(x) = G}| mod p .

THEOREM 194. Let G be a finite p-group. Then Z(G) 6= 1.

PROOF. Let G act on itself by conjugation. The number of conjugacy classes of size 1 must be
divisible by p. �
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LEMMA 195. If G/Z(G) is cyclic it is trivial and G is commutative.

PROOF. Suppose that G/Z(G) is generated by the image of g ∈ G. We first claim that every
x ∈ G is of the form x = gkz for some k ∈ Z, z ∈ Z(G). Indeed, the image of x mod Z(G) is in the
cyclic subgroup generated by g, so there is k such that

x≡ gk (Z(G))

which means
x = gkz .

Now suppose that x = gkz and y = glw where k, l ∈ Z and z,w ∈ Z(G). Then

xy = gkzglw = gkglzw = gk+lzw

yx = glwgkz = glgkwz = gk+lzw .

�

PROPOSITION 196 (Groups of order p2, p3). .
(1) Let G have order p2. Then G is abelian, in fact isomorphic to one of Cp2 and Cp×Cp.
(2) Let G be an abelian group of order p3. Then G is one of Cp3 , Cp2×Cp, Cp×Cp×Cp.
(3) Let G be non-commutative, of order p3. Then Z(G)'Cp and G/Z(G)'Cp×Cp.

PROOF.
(1) The order of Z(G) is a divisor of p2, not equal to 1. If it was p then G/Z(G) would have

order p and be cyclic. It follows that Z(G) = G and G is abelian. If G has an element of
order p2 then G'Cp2 . Otherwise the order of each element of G divides p.
(a) Let x ∈ G have order p, and let y ∈ G− 〈x〉. Then y 6= e so y also has order p.

Consider the map (Z/pZ)2 → G given by f (a,b) = xayb. This is a well-defined
homomorphism, which is injective and surjective.

(b) Write the group law of G additively. For k ∈ Z, x ∈ G write k ·g for gk = g+ · · ·+g
(k times). Since gp = e this is really defined for k ∈ Z/pZ. This endows G with the
structure of a vector space over Fp. It has p2 elements so dimension 2, and fixing a
basis gives an identificationwith

(
F2

p,+
)
'C2

p.
(2) We need to identify each possibility. There is x ∈ G of order p3 G 'Cp3 . If every non-

identity x ∈ G has order p then the argument of (1) gives G 'Cp×Cp×Cp. Otherwise
there are some elements of order p2, but none of order p3. Now the map g 7→ gp is a
homomorphism G→ G. Its kernel is the elements of order dividing p (must be non-
trivial!) so its image is a proper subgroup, to be detnoed Gp. This subgroup is non-trivial
because the pth power of an element of order p2 has order p. Suppose first Gp has order
p2. It can’t be 'Cp2 (if xp ∈ Gp had order p2 then x has order p3 and G would be cyclic)
so it would be Cp×Cp. Now let x ∈ G have order p2. Then xp ∈ Gp is non-trivial. By
part (a) there is y ∈Cp such that Gp = 〈xp〉〈y〉. Then 〈y〉 is disjoint from 〈x〉 and we get
G = 〈x〉〈y〉 'Cp2×Cp, a contradiction (since for this group Gp 'Cp). We conclude that
Gp 'Cp. Let x ∈ G have order p2, so that xp generate Gp. Let y ∈ G\ 〈x〉. If y has order
p we are done. Suppose y has order p2. Then yp ∈ Gp = 〈xp〉 is non-trivia, hence of the
form xkp for some k prime to p. Let k̄ be inverse to k mod p. Then z = yk̄ has 〈z〉= 〈y〉so

33



it still has order p2 and still lies outside 〈x〉. Finally, by contruction zp = xp so zx−1 /∈ 〈x〉
has order p and we are done.

�

4.2. Example: groups of order pq (Lecture 15)

4.2.1. Classification of groups of order 6. To start with, we know C6, S3, D6. C6 is not
isomorphic to the other two (it is abelian, they are not). S3 ' D6. For this note that D6 is the
isometry group of a the complete graph on 3 vertices, so isomorphic to S3. We now show that
C6,D6 are the only two isomorphism classes at order 6.

REMARK 197. For every n we have the group Cn, so that group must be there.

Accordingly, fix a group G of order 6. By Cauchy’s Theorem 190, is it has a subgroup P of
order 2, a subgroup Q of order 3. Note that the subgroup P∩Q must have order dividing both 2,3
so it is trivial.

LEMMA 198. Let P,Q < G satisfy P∩Q = {e}. Then the (set) map P×Q→ PQ given by
(x,y) 7→ xy is a bijection.

PROOF. If xy = x′y′ then x−1x′ = y(y′)−1 ∈ P∩Q = {e}so x = x′ and y = y′. �

REMARK 199. In general there is a bijection between PQ×P∩Q↔ P×Q.

It follows that #PQ = #P×#Q = 6 = #G so G = PQ.

CLAIM. Q is normal (Can simply say that Q has index 2, but we give a different argument
which generalizes).

PROOF. Let C =
{

gQg−1 | g ∈ G
}

be the congugacy class of Q. Since G = PQ we have

C =
{

xyQy−1x−1 | x ∈ P,y ∈ Q
}

=
{

xQx−1 | x ∈ P
}

=
{

Q,aQa−1}
if we parametrize P = {1,a}. Suppose that Q′ = aQa−1 6= Q. Now Q ' Q′ 'C3, and Q′∩Q is a
subgroup of both. It’s not of order 3 (this would force Q = Q′) so it is trivial. It now follows from
the Lemma that #QQ′ = 9 > #G, a contrdiction. �

It follows that G = PQ where Q is a normal subgroup and P∩Q = {e}, that is G = PnQ.
Note that if xy,x′y′ ∈ PQ then

(x′y′)(xy) =
[
x′x
][
(x−1y′x)y

]
.

In particular, to the product structure on PnQ is determined by the conjugation action of P on Q.
Parametrizing P = {e,a}, the action of e is trivial, so it remains to determine aya−1 for y ∈ Q. We
note that (aya−1)2 = aya−1aya−1 = ay2a−1 so parametrizing Q =

{
1,b,b2} it remains to choose

aba−1. This must be one of b,b2 (non-identity elements are not conjugate to the identity), so there
are most two isomorphism classes.

REMARK 200. Having constructed two non-isomorphic groups, we are done, but we’d like to
discover them anew.
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Case 1. If aba−1 = b then a,b commute, so P,Q commute, so G ' P×Q (internal direct prod-
uct). But this means G'C2×C3 'C6 by the Chinese Remainder Theorem 31.

Case 2. If aba−1 = b2 = b−1 then also ab2a = (b2)−1 and we have D6:
{

1,b,b2} are the rota-
tions, and a is the reflection.

4.2.2. Classification of groups of order pq. Let p < q be distinct primes (the case p = q was
dealt with before). Fix a group G of order pq. By Cauchy’s Theorem 190, is it has a subgroup P
of order p, a subgroup Q of order q. Note that the subgroup P∩Q must have order dividing both
p,q so it is trivial.

Again by Lemma 198 we have #PQ = pq = #G so G = PQ.

CLAIM. Q is normal (now[G : Q] = p can be greater than 2).

PROOF. Let C =
{

gQg−1 | g ∈ G
}

be the congugacy class of Q. Since G = PQ we have

C =
{

xyQy−1x−1 | x ∈ P,y ∈ Q
}

=
{

xQx−1 | x ∈ P
}
.

In other words, C is a single orbit for the action of P by conjugation. By the orbit-stabilizer theorem
(Lemma 198), this must have size dividing #P = p so either 1 or p. Assume Q not normal, so the
size is p. Now consider the action of Q on C by conjugation. Each Q-orbit can have size q or 1, but
since q > p there is no room for an orbit of size 1. We conclude that every Q′ ∈ C is normalized by
Q.

Since p≥ 2 there is some Q′ ∈Cc different than Q, and again we have Q∩Q′ = {e} since these
groups are different, and hence #(QQ′) = q2 > pq = #G, a contradiction. �

It follows that G = PQ where Q is a normal subgroup and P∩Q = {e}, that is G = PnQ.
Again the product structure on PnQ is determined by the conjugation action of P on Q. Let a,b
generate P,Q respectively. Then aba−1 = bk for some k. We claim that this fixed the whole action.

First, by induction on j, we have ab ja−1 =
(
b j)k so aya−1 = yk for all y ∈ Q. Second, by

induction on i, aiya−i = y(k
i) (composition of homomorphisms). We see that it remains to choose

k.
Note that ap = e and that b = apba−p = bkp

so we must have kp ≡ 1(q), that is k must have
order dividing p in (Z/qZ)×.
Case 1. If aba−1 = b then a,b commute, so P,Q commute and G'Cp×Cq'Cpq by the Chinese

Remainder Theorem 31.
Case 2. If aba−1 = bk for k 6≡ 1(q). Then k has order exactly p in (Z/qZ)×. Lagrange’s The-

orem then forces p|q− 1 so q ≡ 1(p). Conversely, suppose that this is the case. Then
by Cauchy’s theorem, (Z/qZ)× has elements of order p, so a non-commutative semidi-
rect product exists. Since (Z/qZ)× is cyclic, the elements of order p form a unique
cyclic subgroups, so they are all powers of each other. In particular, replacing a with a
power gives an isomorphism, and we see there is only one isomorphism class of non-
commutative groups in this case, of the form:〈

a,b | ap = bq = e,aba−1 = qk
〉

where k is an element of order p in (Z/qZ)×.
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4.2.3. More detail, and examples (Lecture 16, 5/11/2015).
• Explicitely parametrize G as

{
aib j | i mod p, j mod q

}
.

– Every hom Cn → Cn must be of the form x 7→ xk. Composing two such gives the
hom x 7→ xkl , so have an automorphism if k is invertible mod q. In other words,
Aut(Cn)' (Z/nZ)×.

– For any k mod q can try to define the product(
ai′b j′

)(
aib j)= ai′+ib j′k−i+ j

where k−r is the power in Z/qZ.
– Makes sense only if kp ≡ 1(q) so that ap acts correctly. This can happen only if

q≡ 1(p).
– If q ≡ 1(p) then by Cauchy there are elements of order p and we can make the

definition.
– If we replace k by kr we can replace a with ar (with ar̄) to get isomorphism of the

semidirect products, so only one semidrect product
• Understand in detail how a group of order 3 cannot act on a group of order 5.
• Understand in details that the two non-trivial actions of C3 on C7 give isomorphic groups

C3 nC7.

4.3. Sylow’s Theorems (Lectures 17–19)

We substantially strengthen Cauchy’s Theorem.

4.3.1. The Sylow Theorems (Lecture 17). Fix a group G of order n, and let n = prm where
p - m.

THEOREM 201 (Sylow I). If pi|n then G contains a subgroup of order pi.

PROOF. By induction on i, the case i = 0 being trivial. Accordingly let pi+1 divide the order of
G, and let H < G be a subgroup of order pi. Let H act from the left on G/H. Since H is a p-group,
#Fix(H)≡ #(G/H) (p), so p|#Fix(H). Now gH ∈ Fix(H)iff for all h ∈ H we have

hgH = gH ⇐⇒ hgHg−1 = gHg−1 ⇐⇒ h ∈ gHg−1

so gH ∈ Fix(H) iff H ⊂ gHg−1. Since these groups have the same order, we see that gH ∈ Fix(H)
iff g ∈ NG(H), so Fix(H) = NG(H)/H. It follows that the group NG(H)/H has order divisible by
p. By Cauchy’s Theorem (Theorem 190), it has a subgroup C of order p, whose inverse image in
NG(H) has order p · pi = pi+1. �

REMARK 202. Note that we actually showed that if G contains a subgroup H of order pi, and
if [G : H] is divisible by p j, then H is contained in a subgroup of order pi+ j.

COROLLARY 203. Then every maximal (by inclusion) p-subgroup of G has order pr.

DEFINITION 204. A maximal p-subgroup of G is called a p-Sylow subgroup of G. We write
Sylp(G) for the set of such subgroup and np(G) = #Sylp(G) for their number.

Note that a subgroup conjugate to a Sylow subgroup is a again a Sylow subgroup.

LEMMA 205. Let P be a normal p-Sylow subgroup of G. Then P contains every p-subgroup of
G, and in particular is the unique p-Sylow subgroup.

36



PROOF. Let P′ be any p-subgroup of G. Then PP′ is a p-subgroup of G containing P, hence
equal to P. It follows that P′ < P. �

THEOREM 206 (Sylow II,III). The p-Sylow subgroups of G are all conjugate (in particular,
np(G)|n). Furthermore, np(G)≡ 1(p) (so actually np(G)|m).

PROOF. Let P be a p-Sylow subgroup, and consider the action of P on Sylp(G) by conjugation.
Then P fixes P′ ∈ Sylp(G) iff P < NG(P′). This would make both P,P′ be p-Sylow subgroups of
NG(P′), so by the Lemma P = P′. It follows that P has a unique fixed point, so np(G)≡ 1.

Now let {Pg}g∈G ⊂ Sylp(G) be the set of p-Sylow subgroups conjugate to P. The size of

this set is [G : NG(P)]
∣∣∣ [G : P] and is therefore prime to p (in fact, it is ≡ 1(p) by the previous

argument). Let P′ be any p-Sylow subgroup. Then P′ acts on {Pg}g∈G by conjugation; the number
of fixed points is prime to p, and hence is non-zero. But the only fixed point of P′ on Sylp(G) is P′

itself, so P′ is conjugate to P. It follows that np(G) = [G : NG(P)], which divides n. �

REMARK 207. If n = pkm with p - m, then we actually saw np(G)| [G : P] = m.

4.3.2. Applications I (Lecture 18).

EXAMPLE 208. The only groups of order 12 are C12, C2×C6, A4, C2×S3 and C4 nC3.

PROOF. G be a group of order 12. Then n2(G)|3, so n2(G)∈ {1,3}, and n3(G)|4 while≡ 1(3)
so n3(G) ∈ {1,4}.
Case 1. n3(G)= 4. Then the action of G by conjugation on Syl3(G) gives a homomorphism G→

S4. We have NG(P3) = P3 and since this isn’t normal and has no non-trivial subgroups,
the kernel of the map is trivial. The group G contains 8 elements of order 3, and S4
has 2

(4
3

)
= 8 such elements, so the image contains all elements of order 3, hence the

subgroup A4 generated by them. But A4 has order 12, so G' A4
Case 2. n3(G) = 1. Then G' P2 nP3, and it remains to classify the actions of a group of order

4 on a group of order 3.
Case i. The action is trivial (G ' P2×P3). Then either G ' C4×C3 ' C12 or G '

C2×C2×C3. Here n2(G) = 1.
Case ii. The action is non-trivial and P2 ' V . Since Aut(C3) ' C2, we can write

V ' K×C2 where K is the kernel of the action. Then G ' K× (C2 nC3) '
C2×S3. Here n2(G) = 3 since P2 does not commute with P3.

Case iii. The action is non-trivial and P2 'C4. Since there is a unique non-trivial ho-
momorphism C4→C2 (reduction mod 2), there is a unique semidirect prod-
uct C4 nC3. Here also n2(G) = 3.

�

EXAMPLE 209. There is no simple group of order 30.

PROOF. Let G be a simple group of order 30. Numerology gives n3 ∈ {1,10} and n5(G) ∈
{1,6}, but can’t have a unique p-Sylow subgroup, so n3(G) = 10, n5(G) = 6. This means G has
20 elements of order 2, 24 elements of order 5, which add up to more than 30 elements. �

4.3.3. Applications II (Lecture 19).

EXAMPLE 210. Let G be a simple group of order 60. Then G' A5
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PROOF. Numerology gives n2(G) ∈ {1,3,5,15}, n3(G) ∈ {1,4,10} and n5(G) ∈ {1,6}.
Can’t have np(G) = 1 by simplicity. In fact, can’t have np(G) ≤ 4 since a hom to S4 would

have kernel, so have
n2 ∈ {5,15} ,n3 = 10, n5 = 6 .

In particular, there are 10 · (3−1) = 20 elements of order 3 and 6 · (5−1) = 24 elements of order
4.
Case 1. n2(G) = 5. Then the action of G by conjugation on Syl3(G) gives a homomorphism

G→ S5. The kernel is a proper subgroup of any P3, so is trivial. The image contains
20 elements of order 3, while S5 has 5·4·3

3 = 20 such, so it contains all of them. They
generate A5, so the image is A5.

Case 2. n2(G) = 15. We have at most 60− 20− 24− 1 = 15 non-identity 2-elements, which
means that the 2-Sylow subgroups must intersect. Accordingly let x ∈ G be a non-
identity element belonging to two distinct 2-Sylow subgroups. Then CG(x) properly
contains a 2-Sylow subgroup, its index properly divides 15 (but isn’t 1 since Z(G) is
normal). This gives an action on a set of size 3 or 5. The first case is impossible.

�

EXAMPLE 211 (PS9). No group of order p2q or p2q2 is simple.
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CHAPTER 5

Finitely Generated Abelian Groups

5.1. Statements (Lecture 20)

5.1.1. Prime factorization. Let A be a finite Abelian group of order n. For each p|n let

Ap = A[p∞] =
∞⋃

j=0

A[p j] =
{

a ∈ A | ∃ j : p ja = 0
}
.

This is a subgroup (increasing union of subgroups) containing all p-elements, hence the unique
p-Sylow subgroup. By PS9 we have

A'∏
p

Ap ,

and the Ap are unique. Thus, to classify finite abelian groups it’s enough to classify finite abelian
p-groups.

5.1.2. Example: groups of order 8. Order 8: if some element has order 8, we have C8.
Otherwise, find an element of order 4. This gives all elements of order 4 mod elements of order 2,
so find another element of order 2 and get C4×C2. If every element has order 2 we have C3

2 .

5.1.3. Theorems.

THEOREM 212 (Classification of finite abelian groups). Every finite abelian group can be
written as a product of cyclic p-groups, uniquely up to permutation of the factors.

COROLLARY 213 (Invariant factors). Every finite abelian group can be uniquely written in the
form ∏

d
j=1Cd j with the invariant factors d1|d2| · · · |dr.

What about infinite groups? We call a group finitely generated if it has a finite generating set
(for example, any finite group is).

THEOREM 214 (Fundamental theorem of finitely generated abelian groups). Let A be a finitely
generated abelian group. Then A' Zr×Ators for a unique integer r called the rank of A.

5.1.4. Examples.
(1) Counting elements of order p or p2 in a finite abelian group.
(2) Finding subgroups of finite abelian groups.
(3) Elliptic curves over finite fields and crypto
(4) The Mordell-Weil group of an elliptic curve and the BS-D conjecture.

5.2. Proofs

The material in this section is not examinable.
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5.2.1. Uniqueness in the finite case. By the reduction before, enough to consider abelian
p-groups.

PROPOSITION 215. Suppose ∏
r
i=1Cpei '∏

s
j=1Cp f j . Then r = s and f j = eσ( j) for some σ ∈ Sr.

PROOF. Let A'∏
r
i=1Cpei . Then a ∈ A has order p iff has order p in each factor, so A[p]'Cr

p;
in particular r is uniquely defined and r = s. Next, we have

A/A[p]'
r

∏
i=1

(
Cpei/Cp

)
' ∏

ei>1
Cpei−1

and for the same reason
A/A[p]' ∏

f j>1
Cp f j−1 .

By induction on the order of A, both products have the same number of factors, so in particular
r′ = #{i | ei > 1}= #

{
i | f j > 1

}
so both products have the same number of factors isomorphic to

Cp (r− r′). Ordering them to be last, we also have σ ∈ Sr′ such that f j− 1 = eσ( j)− 1 and this
shows that the ei and f j are the same up to reordering. �

5.2.2. Existence in the finite case. By the reduction before, enough to consider abelian p-
groups. In this section we write the group operation additively.

PROPOSITION 216. Let A be a finite abelian p-group. Then A is isomorphic to a product of
cyclic groups.

Let e be maximal such that A has elements of order pe, and consider the map A→ A given by
fe(a) = pe−1 ·a. The image lies in A[p], so is a subspace there.

• Let {ce,i}Ie
i=1 ⊂ fe(A) be a basis.

• Let be,i ∈ A be such that fe(be,i) = ce,i.

CLAIM 217. The map he : (Z/peZ)Ie → A given by

he(xe) = ∑
i

xe
i be,i

is an isomorphism onto its image Be = 〈{be,i}〉.

PROOF. Each be,i has pebe,i = 0 so the map is well-defined. Its image is a subgroup containing
Be and consisting of words in the {be,i} hence equal to Be. To compute the kernel, let k ≤ e be
maximal such that there are x′i ∈ Z, not all divisible by p, for which x = pkx′ ∈ Ker(he). For such
k and x′i we have

∑
i

pkx′ibe,i = 0 .

Suppose k ≤ e−1. Raising to the power pe−1−k we get

∑
i

x′ice,i = 0

where not all x′i are prime to p, which contradicts the linear independence of the {ce,i} over Z/pZ.
�

Continuing recursively
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CLAIM 218. We have A = Be +A[pe−1] .

PROOF. By construction fe(Be) contains a basis for fe(A) so fe(Be) = fe(A). Accordingly
let a ∈ A. Then there is b ∈ Be such that fe(a) = fe(b). Then a− b ∈ Ker( fe) = A[pe−1] so
a ∈ b+A[pe−1]⊂ Be +A[pe−1]. �

Unfortunately this sum is not direct, so we have to work harder.
• Let fe−1 : A[pe−1]→ A[p] be given by fe−1(a) = pe−2 ·a.
• Since pBe ⊂ A[pe−1] and since fe−1(pa) = fe(a) we see that fe−1

(
A[pe−1]

)
⊃ fe(A).

• Let
{

ce−1,i
}Ie−1

i=1 ⊂ fe−1
(
A[pe−1]

)
extend {ce,i}Ie

i=1 to a basis of fe−1
(
A[pe−1]

)
.

• Let
{

be−1,i
}Ie−1

i=1 ⊂ A[pe−1] be such that fe−1 (be−1,i) = ce−1,i.

PROOF. Now let a ∈ A. We have ape−1
in the image of the map, so we can remove an element

of Ape and get an element of A[pe−1]. It follows that it is enough to generate that. �

Accordingly consider the map A[pe−1]→ A[p] given by a 7→ ape−2
. The image contains the image

of the previous map; extend the previous basis to a new basis, and pull back
{

be−1,i
}Ie−1

i=1 .

CLAIM 219. The map he−1 : (Z/peZ)Ie×
(
Z/pe−1Z

)Ie−1 → A given by

he−1(xe,xe−1) = ∑
i

xe
i be,i +∑

i
xe−1

i be−1,i

is an isomorphism onto its image Be⊕Be−1 =
〈
{be,i}∪

{
be−1,i

}〉
.

PROOF. Each be−1,i has pe−1be,i = 0 so the map is well-defined. Its image is clearly generated
by {be,i}∪

{
be−1,i

}
. To compute the kernel suppose

he−1(xe,xe−1) = 0 .

Applying fe (which kills the be−1,i) and using that {ce,i} are linearly independent over Fp we see
that xe

i are all divisible by p. Now let k ≤ e−1 be maximal such that there is (xe,xe−1) ∈ Kerhe−1

with xe−1 divisible by pk, xe divisible by pk+1. Multiply by pe−1−k we get x̄e
i , x̄

e−1
i , not all zero

mod p, such that

∑
i

x̄e
i ce,i +∑

i
x̄e−1

i ce−1,i = 0 .

But this is a contradiction to the choice of the basis for fe−1
(
A[pe−1]

)
. �

CLAIM 220. We have A = (Be⊕Be−1)+A[pe−2].

PROOF. Enough to show A[pe−1] = Be−1 +A[pe−2] which has the same proof as before. �

Now continue recursively.

5.2.3. Finitely generated abelian groups. Let ei ∈Zd be the standard basis vector (the vector
with 1 at the ith position and zero elsewhere).

PROPOSITION 221. Zd is free: for any abelian group A and any {ai}d
i=1 ⊂ A there is a unique

homomorphism f : Zd → A such that f (ei) = ai.
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PROOF. Define f : Zd→ A by f (n) = n1a1+ · · ·+ndad . This is a group homomorphism since
A is abelian:

f (n+m) =
d

∑
i=1

(ni +mi)ai =
d

∑
i=1

(niai +miai)

=
d

∑
i=1

niai +
d

∑
i=1

miai = f (n)+ f (m) .

That f (ei) = ai holds by construction, and that f is unique follows from the general fact: �

EXERCISE 222. Let f ,g ∈ Hom(G,H) and let X ⊂ G. If f �X= g �X then f �〈X〉= g �〈X〉.

LEMMA-DEFINITION 223. Let A be a finitely generated torsion-free abelian group. Then there
are (“primitive elements”) a ∈ A such that if a = n ·b for some n ∈ Z, b ∈ A then n =±1.

PROOF. Let S⊂ A be a finite generating set. Then it spans the vector space Q⊗Z A. Let S0 ⊂ S
be a basis. Then 〈S0〉 ' Z#S0 and every element of S, hence A, has bounded denominator wrt
S0. �

THEOREM 224. Every finitely-generated torsion-free abelian group is free.

PROOF. By induction on dimQ (Q⊗Z A). Let a∈A be primitive. Then dimQ (Q⊗Z (A/〈a〉))=
dimQ (Q⊗Z A/Qa) < dimQ (Q⊗Z A). Thus A/〈a〉 is free, say A/〈a〉 ' Zr−1. Choose a section,
and get a direct sum decomposition. �

THEOREM 225. Every finitely generated abelian group is of the form Zr⊕Ators for a finite
abelian group Ators.

PROOF. Let Ators be the torsion subgroup. Then A/Ators is finitely generated and torsion-free,
hence isomorphic to Zr for some r. Let s : Zr→ A be a section for the quotient map (exists since
Zr is free). The map is injective (apply quotient map) so image is disjoint from the torsion, so
A' Zr×Ators. This shows Ators ' A/Zr so Ators is also finitely generated, hence finite. �
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CHAPTER 6

Solvable and Nilpotent groups

6.1. Nilpotence: Lecture 21

6.1.1. Nilpotent groups. In PS9 studied G such that G/Z(G) is abelian – groups which are
“nilpotent of order 2”. Kick it up a notch: consider G such that G/Z(G) are nilpotent of order 2 –
call these “nilpotent of order 3”.

DEFINITION 226. Call G nilpotent of order 0 if it is trivial; nilpotent of order d+1 if G/Z(G)
is nilpotent of order d.

EXAMPLE 227. Finite p-groups are nilpotent.

PROOF. By induction on the order: Z(G) is always non-trivial, and G/Z(G) is smaller. �

EXAMPLE 228. Products of p-groups.

EXERCISE 229. (PS10) A finite group is nilpotent iff it is a direct product of p-groups.

In more detail, let G be a group. Let Z0(G) = {1}, Zi+1(G) the containing Zi(G) and corre-
sponding to Z

(
G/Zi(G)

)
. For example Z1(G) = Z(G).

LEMMA 230. Zi(G) is an increasing sequence of normal subgroups.

PROOF. Z
(
G/Zi(G)

)
is normal in G/Zi(G), now apply the correspondence theorem. �

DEFINITION 231. This is called the ascending central series.

EXAMPLE 232. Let Un =


1 ∗ ∗

. . . ∗
1

 ⊂ GLn(F) be the group of upper-triangular ma-

trices with 1s on the diagonal. For example, U2 ' (F,+) and U3 is the Heisenberg group.

EXERCISE 233. Z(Un) has zeroes everywhere except the upper right corner. Z2(Un) has zeroes
everywhere except the upper two diagonals and so on.

DEFINITION 234. Central series

THEOREM 235. Zi(G) is the fastest-growing central series.

DEFINITION 236. γ0(G) = G, γ i+1(G) =
[
γ i(G),G

]
. Then these are all normal subgroups,

γ i(G)/γ i+1(G)⊂ Z
(
G/γ i+1(G)

)
, and this is the fastest descending central series.

6.1.2. Solvable groups.

DEFINITION 237 (Normal series).

DEFINITION 238. G is solvable if it has a normal series with each quotient abelian.

EXAMPLE 239. Abelian groups. Upper-triangular group. Non-example: Sn, n≥ 5.
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6.1.3. Motivation: Galois theory.
• Construction of Galois group of f ∈Q[x].
• Main Theorem

6.2. Solvable groups: Lecture 22

• Refinement of normal series.
• Statement of Jordan–Hölder.

PROPOSITION 240. Any subgroup of a solvable group is solvable.

PROOF. Restrict normal series to subgroup. �

PROPOSITION 241. Any quotient of a solvable group is solvable.

PROOF. Take images of normal series. �

THEOREM 242. Let NCG. Then G is solvable iff N,G/N are.

PROOF. Stitch normal series. �

EXAMPLE 243. Every group of order pq, p2q is solvable.

THEOREM 244 (Burnside [1]). Every group of order paqb is solvable.
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CHAPTER 7

Topics

7.1. Minimal normal subgroups

7.1.1. Characteristically free subgroups.

7.1.2. The Socle.

7.1.3. Hall subgroups.

DEFINITION 245. Let G be a finite group. A Hall subgroup is a subgroup H < G such that
gcd(H, [G : H]) = 1.

THEOREM 246 (M. Hall). Let G be a solvable group of order mn with (m,n) = 1. Then G has
a subgroup of order m.

PROOF. Let G be a minimal counter-example, and let MCG be a minimal normal subgroup.
Then M is elementary abelian (it is solvable), say of order pr. If pr|m it suffices to pull back a
subgroup of G/M of order m/pr. Otherwise pulling back a subgroup of order m of G/M we may
assume that #G = m · pr. �

THEOREM 247 (Schur 1904, Zassenhaus 1937). Let H < G be a normal Hall subgroups. Then
G = QnH for some Q < G.

PROOF. Let MCG be a minimal normal subgroup, and let Q̄ be a complement to H̄ = HM/M
in G/M. If M ∩H = {e} then Q is a complement to H. Otherwise M ⊂ H, Q∩H = M and it’s
enough to find a complement to M in Q, that is assume that H is a minimal normal subgroup.

Now let P < H be a non-trivial Sylow subgroup. By the Frattini argument, G = HNG(P). If
NG(P) is a proper subgroup, we have reduced the problem to finding a complement to NH(P) =
H ∩NG(P) in NG(P), so we may assume PCG. But H is a minimal normal subgroup, so P = H.
We conclude that H is elementary abelian.

In the abelian case one directly computes the cohomology H2(G/H;H) and sees that it is
trivial. �
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