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Abstract. In this note we prove that the Hasse-Weil zeta function of a curve is a rational
function and satisfies a functional equation. We follow [Must, Chapter 3].

1. Preliminaries and notation: quick review

Throughout this note X is a smooth projective curve over k := Fq. A Weil divisor
D ∈ Div(X) on X is a finite formal sum of the form

D =
∑
x∈Xcl

nxx,

where Xcl are the closed points of X. We identify each closed point in Xcl with the orbit
of a point in X(Fq) under the action of Gal(Fq|Fq). The degree of a closed point x ∈ Xcl is
deg(x) = [k(x) : k], where k(x) is the residue field of x. The degree of the divisor D is

deg(D) =
∑
x∈Xcl

nx deg(x).

Example 1.1. Let X = A1
F3

= spec(F3[x]). Then P = spec
(
F3[x]

/
(x2 + 1)

)
is a closed

point of X corresponding to the maximal ideal (x2 +1) of F3[x]. The residue field is F3(P ) =

F3[x]
/

(x2 + 1) which is a degree 2 extension of F3. Hence the divisor D = P has degree

deg(D) = [F3(P ) : F3] = 2.

Because X is a smooth projective curve we may identify a Weil divisor D ∈ Div(X) with
its induced line bundle L = OX(D). We write deg(OX(D)) = deg(D).

We say that two Weil divisors D,D′ ∈ Div(X) are linearly equivalent and write D ∼ D′

iff D − D′ = div(f) for some f ∈ k(X)×. We write Pic(X) to denote the group of the
divisors on X modulo this equivalence relation. Note that linearly equivalent Weil divisors
correspond to isomorphic line bundles. In other words, Pic(X) is the group of line bundles
on X modulo the isomorphism relation. We write [D] for a divisor class in Pic(X).

Since our curve X is projective, linearly equivalent divisors have the same degree and
hence the degree map descends to give a group homomorphism deg : Pic(X) → Z. The
kernel of this homomorphism is denoted by Pic0(X). We recall the Riemann-Roch theorem.

Theorem 1.2. Let D ∈ Div(X) and write K for the canonical divisor of X. We have

`(D)− `(K −D) = degD − g + 1.
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Moreover, deg(K) = 2g − 2 and

`(D) = deg(D)− g + 1, if deg(D) ≥ 2g − 1.

In the following we will make use of the following corollary of the Riemann-Roch.

Proposition 1.3. The number of effective divisors in Div(X) that are linearly equivalent

to D ∈ Div(X) is q`(D)−1
q−1 . If in particular deg(D) ≥ 2g − 1, then the number of effective

divisors in Div(X) that are linearly equivalent to D is qdegD−g+1−1
q−1 .

Remark 1.4. Recall that for D,D′ ∈ Div(X) with D ∼ D′ we have `(D) = `(D′). Therefore
the integer `([D]) := `(D) is well defined for a divisor class in Pic(X).

2. Rationality

In this section we aim to prove the following strong form of the rationality conjecture in
the setting of a smooth projective curve X over Fq.

In the following we write

Pic0(X) = {[D] ∈ Pic(X) : deg([D]) = 0},
and

Picm(X) = {[D] ∈ Pic(X) : deg([D]) = m},
To state the strong form of the rationality conjecture we aim to prove, we will first see that
Pic0(X) is a finite subgroup of Pic(X). We will write h := |Pic0(X)|.

Lemma 2.1. We have that

(1) Pic0(X) is a finite subgroup of Pic(X), we write h := |Pic0(X)|.
(2) deg(Pic(X)) = eZ for some e ∈ N>0 and if we write h := |Pic0(X)|, we have

|{[D] ∈ Pic(X) : deg([D]) = m}| =
{
h , e|m
0 , otherwise.

Proof. We will first prove the first part of this lemma. It is easy to see that Pic0(X) is a group.
We will prove that Pic0(X) is finite. Let Dn ∈ Div(X) be such that deg(Dn) := n ≥ 2g.
Notice that the map

Pic0(X)→ Picn(X)

[D] 7→ [D +Dn],

gives a bijection between Pic0(X) and Picn(X). Therefore, it suffices to prove that Picn(X)
is a finite set. We claim that for any divisor class [D] ∈ Picn(X), there exists an effective
divisor D′ ∈ Div(X) such that [D] = [D′]. This is a consequence of the Riemann-Roch.
Since deg(D) ≥ 2g > 2g − 1, we have that `(D) = n − g + 1 > 0, hence D is linearly
equivalent to an effective divisor D′. Thus it suffices to see that there is a finite number of
effective divisors of degree n. This holds since there are only finitely many ways to write
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n as a sum of positive numbers and there are only finitely many closed points in Xcl with
degree less than n.

For the second part of this lemma, notice that deg(Pic(X)) is an ideal of Z, therefore it
can be written as deg(Pic(X)) = eZ for some e ∈ N>0. Fix a divisor class [Dm] ∈ Picem(X).
The map

Pic0(X)→ Picem(X)

[D] 7→ [D +Dm],

gives a bijection between Pic0(X) and Picem(X). The lemma follows. �

Theorem 2.2. If X is a smooth projective curve over Fq of genus g such that X is irreducible

over Fq, we have

Z(X, t) =
f(t)

(1− t)(1− qt)
,

where f ∈ Z[t] is a polynomial of degree deg(f) ≤ 2g, such that f(0) = 1 and f(1) = h.

We begin by establishing some key lemmas.

Lemma 2.3. Let X be a variety over Fq and X ′ be the same variety over Fqr . Then

Z(X ′, tr) =
r∏

i=1

Z(X, ξit),

where ξ is a primitive r−th root of unity.

Proof. Let Nm = |X(Fqm)| and N ′m = |X ′(Fqrm)|. We want to prove that

exp

(∑
m≥1

N ′m
m
trm

)
=

r∏
i=1

exp

(∑
`≥1

N`

`
ξ`it`

)
,

or equivalently that ∑
m≥1

N ′m
m
trm =

∑
`≥1

N`

`

(
r∑

i=1

ξ`i

)
t`.

The desired equality follows from the fact that N ′m = Nrm for all m ≥ 1 and
r∑

i=1

ξ`i =

{
0 r - `
r otherwise.

�

Proof of Theorem 2.2. Last time we saw that

Z(X, t) =
∑
D≥0

tdeg(D).
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Denote by a[D] := |{D′ ∈ [D] : D′ ≥ 0}|. We may write

Z(X, t) =
∑

[D]∈Pic(X)

a[D]t
deg([D]).

We break this sum into two components depending on whether deg([D]) ≥ 2g − 1 or
deg([D]) ≤ 2g − 2. Then

Z(X, t) =
∑

[D]∈Pic(X),deg([D])≤2g−2

a[D]t
deg([D]) +

∑
[D]∈Pic(X),deg([D])≥2g−1

a[D]t
deg([D]).(1)

We will now prove the first part of this theorem. That is that Z(X, t) is a rational function.
Notice that

S1(t) :=
∑

[D]∈Pic(X),deg([D])≤2g−2

a[D]t
deg([D]),(2)

is a polynomial. Therefore, it suffices to prove that

S2(t) :=
∑

[D]∈Pic(X),deg([D])≥2g−1

a[D]t
deg([D])

is a rational function. By Proposition 1.3, we get

S2(t) =
∑

[D]∈Pic(X),deg([D])≥2g−1

qdeg([D])−g+1 − 1

q − 1
tdeg([D]).

Notice now that in view of Lemma 2.1 we have deg(Pic(X)) = eZ for some e ∈ N>0 and

|{[D] ∈ Pic(X) : deg([D]) = m}| =
{
h e|m
0 otherwise.

Let d0 be the smallest integer such that d0e ≥ 2g − 1. We have

S2(t) =
∑
d≥d0

h
qde−g+1 − 1

q − 1
tde =

h

(q − 1)

(
q1−g · (qt)d0e

1− (qt)e
− td0e

1− te

)
.(3)

This finishes the proof that Z(X, t) is a rational function.
We proceed now to establish the complete statement of the theorem. Notice that S1(t) =

g(te) for some polynomial g ∈ Z[t] with degree deg(g) ≤ 2g−2
e

. Combining this with (3) we
get

Z(X, t) =
f(te)

(1− te)(1− qete)
,(4)

where f ∈ Q[t] with deg(f) ≤ max{2 + 2g−2
e
, d0 + 1}. In fact since Z(X, t) ∈ Z[[t]] we see

that f ∈ Z[t]. We will now show that e = 1.
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Note that the fact that S1(t) is a polynomial together with the expression in (3) yield

lim
t→1

(t− 1)Z(X, t) = lim
t→1

−htd0e(t− 1)

q(1− te)
.

Therefore, Z(X, t) has a pole of order 1 at t = 1. If we now consider X ′ to be the curve X
over Fqe , in view of Lemma 2.3, we get

Z(X ′, te) =
e∏

i=1

Z(X, ξit),

for a e−th primitive root of unity ξ. This equation combined with (4) gives that

Z(X ′, te) = Z(X, t)e.

However as we have seen Z(X, t) as well as Z(X ′, t) has a pole of order 1 at t = 1, which
gives e = 1.

We have thus established that e = 1.
Since e = 1, we have d0 = 2g− 1. Therefore, the fact that deg(f) ≤ max{2 + 2g−2

e
, d0 + 1}

implies that deg(f) ≤ 2g.
If in particular g = 0 we have

Z(X, t) =
h

(1− t)(1− qt)
.

Finally, if g ≥ 1 we have f(0) = 1 and f(1) = h as one can easily see from (2) and (3). �

In the course of the proof of Theorem 2.2 we saw that deg(Pic(X)) = Z. Combining this
with Lemma 2.1, we get the following corollary.

Corollary 2.4. All Picm(X) have the same non-zero number of elements h = |Pic0(X)|.

Before proceeding to prove the functional equation, we make some remarks on the existence
of divisors with degree one.

Remark 2.5.

• If a curve X has an Fq point, then it has a divisor over Fq of degree 1. However, the
converse is not true.
• If a curve defined over any field K, has genus 0 or 1 then it has an K−point if and

only if it has a divisor over K of degree 1. This is a consequence of the Riemann-
Roch which in this case implies that every divisor is linearly equivalent to an effective
divisor.
• Corollary 2.4 is not true for smooth curves over a number field K. For example we

consider the smooth conic C : x2 + y2 + z2 = 0 over Q. This conic has no divisor
of degree 1. Indeed, if it had, since it has genus 0 it would also have a Q−point.
However C is pointless over Q. In fact, one can see that since the canonical divisor
of C has degree −2 we have deg(Pic(C)) = 2Z.
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• If the curve X has a divisor of degree n and m for two coprime integers n and m,
then it has a divisor of degree 1. Most times (more specifically when the genus of
the curve is not 1) we can find a divisor of even degree. This is the case because the
canonical divisor on curve of genus g has degree 2g− 2. Thus if a curve of genus not
equal to one has a divisor of odd degree, then it also has a divisor of degree 1.

3. Functional equation

We are now going to prove that the Hasse-Weil zeta function of a curve satisfies a functional
equation, as stated in the theorem below.

Theorem 3.1. If X is a smooth projective curve over Fq of genus g such that X is irreducible

over Fq, we have

Z

(
X,

1

qt

)
= q1−gt2−2gZ(X, t).

Proof. As in the proof of Theorem 2.2 we write

Z(X, t) =

2g−2∑
m=0

∑
[D]∈Picm(X)

q`([D]) − 1

q − 1
tm +

∑
m≥2g−1

h
qm−g+1 − 1

q − 1
tm

=

2g−2∑
m=0

∑
[D]∈Picm(X)

q`([D]) − 1

q − 1
tm +

h

(q − 1)

(
q1−g · (qt)2g−1

1− qt
− t2g−1

1− t

)

=

2g−2∑
m=0

∑
[D]∈Picm(X)

q`([D])

q − 1
tm −

2g−2∑
m=0

h

q − 1
tm +

h

(q − 1)

(
q1−g · (qt)2g−1

1− qt
− t2g−1

1− t

)

=

2g−2∑
m=0

∑
[D]∈Picm(X)

q`([D])

q − 1
tm +

h

(q − 1)

(
q1−g · (qt)2g−1

1− qt
− 1

1− t

)
:= F (t) +G(t),

where F (t) =

2g−2∑
m=0

∑
[D]∈Picm(X)

q`([D])

q − 1
tm and G(t) = h

(q−1)

(
q1−g · (qt)

2g−1

1−qt −
1

1−t

)
.

We now compute

(q − 1)

h
G(1/qt) = q1−g · t1−2g

1− t−1
− 1

1− (qt)−1

=
q1−gt2−2g

t− 1
− qt

qt− 1

= t2−2gq1−g
(
qgt2g−1

1− qt
− 1

t− 1

)
= t2−2gq1−g

q − 1

h
G(t).



7

Therefore,

G(1/qt) = t2−2gq1−gG(t).(5)

Next are going to compute F (1/qt). We have

F (1/qt) =

2g−2∑
m=0

∑
[D]∈Picm(X)

q`([D])

q − 1
(qt)−m.

In view of Theorem 1.2, we have that the map

Picm(X)→ Pic2g−2−m

[D] 7→ [K −D],

is a bijection. Moreover, as m runs through {0, · · · , 2g − 2} so does 2g − 2−m. Thus, the
sum can be rewritten as

F (1/qt) =

2g−2∑
m=0

∑
[D]∈Picm(X)

q`([K−D])

q − 1
(qt)m+2−2g.

Furthermore, Theorem 1.2 yields that `([K −D]) = `([D])− (deg([D])− g + 1). Therefore,
we get

F (1/qt) =

2g−2∑
m=0

∑
[D]∈Picm(X)

q`([D])−m+g−1

q − 1
(qt)m+2−2g

= t2−2gq1−g
2g−2∑
m=0

∑
[D]∈Picm(X)

q`([D])

q − 1
tm

= t2−2gq1−gF (t).

Thus,

F (1/qt) = t2−2gq1−gF (t).(6)

Combining (5) and (6) we get

Z(X, 1/qt) = q1−gt2−2gZ(X, t).

The theorem follows. �
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