NIKI MYRTO MAVRAKI

Abstract

In this note we prove that the Hasse-Weil zeta function of a curve is a rational function and satisfies a functional equation. We follow [Must, Chapter 3].

1. PRELIMINARIES AND NOTATION: QUICK REVIEW

Throughout this note X is a smooth projective curve over $k:=\mathbb{F}_{q}$. A Weil divisor $D \in \operatorname{Div}(X)$ on X is a finite formal sum of the form

$$
D=\sum_{x \in X_{\mathrm{cl}}} n_{x} x
$$

where X_{cl} are the closed points of X. We identify each closed point in X_{cl} with the orbit of a point in $X\left(\overline{\mathbb{F}_{q}}\right)$ under the action of $\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} \mid \mathbb{F}_{q}\right)$. The degree of a closed point $x \in X_{\mathrm{cl}}$ is $\operatorname{deg}(x)=[k(x): k]$, where $k(x)$ is the residue field of x. The degree of the divisor D is

$$
\operatorname{deg}(D)=\sum_{x \in X_{\mathrm{cl}}} n_{x} \operatorname{deg}(x)
$$

Example 1.1. Let $X=\mathbb{A}_{\mathbb{F}_{3}}^{1}=\operatorname{spec}\left(\mathbb{F}_{3}[x]\right)$. Then $P=\operatorname{spec}\left(\mathbb{F}_{3}[x] /\left(x^{2}+1\right)\right)$ is a closed point of X corresponding to the maximal ideal $\left(x^{2}+1\right)$ of $\mathbb{F}_{3}[x]$. The residue field is $\mathbb{F}_{3}(P)=$ $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$ which is a degree 2 extension of \mathbb{F}_{3}. Hence the divisor $D=P$ has degree $\operatorname{deg}(D)=\left[\mathbb{F}_{3}(P): \mathbb{F}_{3}\right]=2$.

Because X is a smooth projective curve we may identify a Weil divisor $D \in \operatorname{Div}(X)$ with its induced line bundle $\mathcal{L}=\mathcal{O}_{X}(D)$. We write $\operatorname{deg}\left(\mathcal{O}_{X}(D)\right)=\operatorname{deg}(D)$.

We say that two Weil divisors $D, D^{\prime} \in \operatorname{Div}(X)$ are linearly equivalent and write $D \sim D^{\prime}$ iff $D-D^{\prime}=\operatorname{div}(f)$ for some $f \in k(X)^{\times}$. We write $\operatorname{Pic}(X)$ to denote the group of the divisors on X modulo this equivalence relation. Note that linearly equivalent Weil divisors correspond to isomorphic line bundles. In other words, $\operatorname{Pic}(X)$ is the group of line bundles on X modulo the isomorphism relation. We write $[D]$ for a divisor class in $\operatorname{Pic}(X)$.

Since our curve X is projective, linearly equivalent divisors have the same degree and hence the degree map descends to give a group homomorphism deg : $\operatorname{Pic}(X) \rightarrow \mathbb{Z}$. The kernel of this homomorphism is denoted by $\operatorname{Pic}^{0}(X)$. We recall the Riemann-Roch theorem.
Theorem 1.2. Let $D \in \operatorname{Div}(X)$ and write \mathcal{K} for the canonical divisor of X. We have

$$
\ell(D)-\ell(\mathcal{K}-D)=\operatorname{deg} D-g+1
$$

Moreover, $\operatorname{deg}(\mathcal{K})=2 g-2$ and

$$
\ell(D)=\operatorname{deg}(D)-g+1, \text { if } \operatorname{deg}(D) \geq 2 g-1
$$

In the following we will make use of the following corollary of the Riemann-Roch.
Proposition 1.3. The number of effective divisors in $\operatorname{Div}(X)$ that are linearly equivalent to $D \in \operatorname{Div}(X)$ is $\frac{q^{\ell(D)}-1}{q-1}$. If in particular $\operatorname{deg}(D) \geq 2 g-1$, then the number of effective divisors in $\operatorname{Div}(X)$ that are linearly equivalent to D is $\frac{q^{\operatorname{deg} D-g+1}-1}{q-1}$.
Remark 1.4. Recall that for $D, D^{\prime} \in \operatorname{Div}(X)$ with $D \sim D^{\prime}$ we have $\ell(D)=\ell\left(D^{\prime}\right)$. Therefore the integer $\ell([D]):=\ell(D)$ is well defined for a divisor class in $\operatorname{Pic}(X)$.

2. Rationality

In this section we aim to prove the following strong form of the rationality conjecture in the setting of a smooth projective curve X over \mathbb{F}_{q}.

In the following we write

$$
\operatorname{Pic}^{0}(X)=\{[D] \in \operatorname{Pic}(X): \operatorname{deg}([D])=0\}
$$

and

$$
\operatorname{Pic}^{m}(X)=\{[D] \in \operatorname{Pic}(X): \operatorname{deg}([D])=m\}
$$

To state the strong form of the rationality conjecture we aim to prove, we will first see that $\operatorname{Pic}^{0}(X)$ is a finite subgroup of $\operatorname{Pic}(X)$. We will write $h:=\left|\operatorname{Pic}^{0}(X)\right|$.

Lemma 2.1. We have that
(1) $\operatorname{Pic}^{0}(X)$ is a finite subgroup of $\operatorname{Pic}(X)$, we write $h:=\left|\operatorname{Pic}^{0}(X)\right|$.
(2) $\operatorname{deg}(\operatorname{Pic}(X))=e \mathbb{Z}$ for some $e \in \mathbb{N}_{>0}$ and if we write $h:=\left|\operatorname{Pic}^{0}(X)\right|$, we have

$$
|\{[D] \in \operatorname{Pic}(X): \operatorname{deg}([D])=m\}|= \begin{cases}h & , \text { e|m } \\ 0 & , \text { otherwise. }\end{cases}
$$

Proof. We will first prove the first part of this lemma. It is easy to see that $\operatorname{Pic}^{0}(X)$ is a group. We will prove that $\operatorname{Pic}^{0}(X)$ is finite. Let $D_{n} \in \operatorname{Div}(X)$ be such that $\operatorname{deg}\left(D_{n}\right):=n \geq 2 g$. Notice that the map

$$
\begin{aligned}
\operatorname{Pic}^{0}(X) & \rightarrow \operatorname{Pic}^{n}(X) \\
{[D] } & \mapsto\left[D+D_{n}\right],
\end{aligned}
$$

gives a bijection between $\operatorname{Pic}^{0}(X)$ and $\operatorname{Pic}^{n}(X)$. Therefore, it suffices to prove that $\operatorname{Pic}^{n}(X)$ is a finite set. We claim that for any divisor class $[D] \in \operatorname{Pic}^{n}(X)$, there exists an effective divisor $D^{\prime} \in \operatorname{Div}(X)$ such that $[D]=\left[D^{\prime}\right]$. This is a consequence of the Riemann-Roch. Since $\operatorname{deg}(D) \geq 2 g>2 g-1$, we have that $\ell(D)=n-g+1>0$, hence D is linearly equivalent to an effective divisor D^{\prime}. Thus it suffices to see that there is a finite number of effective divisors of degree n. This holds since there are only finitely many ways to write
n as a sum of positive numbers and there are only finitely many closed points in X_{cl} with degree less than n.

For the second part of this lemma, notice that $\operatorname{deg}(\operatorname{Pic}(X))$ is an ideal of \mathbb{Z}, therefore it can be written as $\operatorname{deg}(\operatorname{Pic}(X))=e \mathbb{Z}$ for some $e \in \mathbb{N}_{>0}$. Fix a divisor class $\left[D_{m}\right] \in \operatorname{Pic}^{e m}(X)$. The map

$$
\begin{aligned}
\operatorname{Pic}^{0}(X) & \rightarrow \operatorname{Pic}^{e m}(X) \\
{[D] } & \mapsto\left[D+D_{m}\right],
\end{aligned}
$$

gives a bijection between $\operatorname{Pic}^{0}(X)$ and $\operatorname{Pic}^{e m}(X)$. The lemma follows.
Theorem 2.2. If X is a smooth projective curve over \mathbb{F}_{q} of genus g such that X is irreducible over $\overline{\mathbb{F}_{q}}$, we have

$$
Z(X, t)=\frac{f(t)}{(1-t)(1-q t)},
$$

where $f \in \mathbb{Z}[t]$ is a polynomial of degree $\operatorname{deg}(f) \leq 2 g$, such that $f(0)=1$ and $f(1)=h$.
We begin by establishing some key lemmas.
Lemma 2.3. Let X be a variety over \mathbb{F}_{q} and X^{\prime} be the same variety over $\mathbb{F}_{q^{r}}$. Then

$$
Z\left(X^{\prime}, t^{r}\right)=\prod_{i=1}^{r} Z\left(X, \xi^{i} t\right)
$$

where ξ is a primitive $r-$ th root of unity.
Proof. Let $N_{m}=\left|X\left(\mathbb{F}_{q^{m}}\right)\right|$ and $N_{m}^{\prime}=\left|X^{\prime}\left(\mathbb{F}_{q^{r m}}\right)\right|$. We want to prove that

$$
\exp \left(\sum_{m \geq 1} \frac{N_{m}^{\prime}}{m} t^{r m}\right)=\prod_{i=1}^{r} \exp \left(\sum_{\ell \geq 1} \frac{N_{\ell}}{\ell} \xi^{\ell i} t^{\ell}\right)
$$

or equivalently that

$$
\sum_{m \geq 1} \frac{N_{m}^{\prime}}{m} t^{r m}=\sum_{\ell \geq 1} \frac{N_{\ell}}{\ell}\left(\sum_{i=1}^{r} \xi^{\ell i}\right) t^{\ell} .
$$

The desired equality follows from the fact that $N_{m}^{\prime}=N_{r m}$ for all $m \geq 1$ and

$$
\sum_{i=1}^{r} \xi^{\ell i}= \begin{cases}0 & r \nmid \ell \\ r & \text { otherwise } .\end{cases}
$$

Proof of Theorem 2.2. Last time we saw that

$$
Z(X, t)=\sum_{D \geq 0} t^{\operatorname{deg}(D)}
$$

Denote by $a_{[D]}:=\left|\left\{D^{\prime} \in[D]: D^{\prime} \geq 0\right\}\right|$. We may write

$$
Z(X, t)=\sum_{[D] \in \operatorname{Pic}(X)} a_{[D]} t^{\operatorname{deg}([D])} .
$$

We break this sum into two components depending on whether $\operatorname{deg}([D]) \geq 2 g-1$ or $\operatorname{deg}([D]) \leq 2 g-2$. Then

$$
\begin{equation*}
Z(X, t)=\sum_{[D] \in \operatorname{Pic}(X), \operatorname{deg}([D]) \leq 2 g-2} a_{[D]} t^{\operatorname{deg}([D])}+\sum_{[D] \in \operatorname{Pic}(X), \operatorname{deg}([D]) \geq 2 g-1} a_{[D]} t^{\operatorname{deg}([D])} . \tag{1}
\end{equation*}
$$

We will now prove the first part of this theorem. That is that $Z(X, t)$ is a rational function. Notice that

$$
\begin{equation*}
S_{1}(t):=\sum_{[D] \in \operatorname{Pic}(X), \operatorname{deg}([D]) \leq 2 g-2} a_{[D]} t^{\operatorname{deg}([D])}, \tag{2}
\end{equation*}
$$

is a polynomial. Therefore, it suffices to prove that

$$
S_{2}(t):=\sum_{[D] \in \operatorname{Pic}(X), \operatorname{deg}([D]) \geq 2 g-1} a_{[D]} t^{\operatorname{deg}([D])}
$$

is a rational function. By Proposition 1.3, we get

$$
S_{2}(t)=\sum_{[D] \in \operatorname{Pic}(X), \operatorname{deg}([D]) \geq 2 g-1} \frac{q^{\operatorname{deg}([D])-g+1}-1}{q-1} t^{\operatorname{deg}([D])}
$$

Notice now that in view of Lemma 2.1 we have $\operatorname{deg}(\operatorname{Pic}(X))=e \mathbb{Z}$ for some $e \in \mathbb{N}_{>0}$ and

$$
|\{[D] \in \operatorname{Pic}(X): \operatorname{deg}([D])=m\}|=\left\{\begin{array}{cc}
h & e \mid m \\
0 & \text { otherwise }
\end{array}\right.
$$

Let d_{0} be the smallest integer such that $d_{0} e \geq 2 g-1$. We have

$$
\begin{equation*}
S_{2}(t)=\sum_{d \geq d_{0}} h \frac{q^{d e-g+1}-1}{q-1} t^{d e}=\frac{h}{(q-1)}\left(q^{1-g} \cdot \frac{(q t)^{d_{0} e}}{1-(q t)^{e}}-\frac{t^{d_{0} e}}{1-t^{e}}\right) \tag{3}
\end{equation*}
$$

This finishes the proof that $Z(X, t)$ is a rational function.
We proceed now to establish the complete statement of the theorem. Notice that $S_{1}(t)=$ $g\left(t^{e}\right)$ for some polynomial $g \in \mathbb{Z}[t]$ with degree $\operatorname{deg}(g) \leq \frac{2 g-2}{e}$. Combining this with (3) we get

$$
\begin{equation*}
Z(X, t)=\frac{f\left(t^{e}\right)}{\left(1-t^{e}\right)\left(1-q^{e} t^{e}\right)} \tag{4}
\end{equation*}
$$

where $f \in \mathbb{Q}[t]$ with $\operatorname{deg}(f) \leq \max \left\{2+\frac{2 g-2}{e}, d_{0}+1\right\}$. In fact since $Z(X, t) \in \mathbb{Z}[[t]]$ we see that $f \in \mathbb{Z}[t]$. We will now show that $e=1$.

Note that the fact that $S_{1}(t)$ is a polynomial together with the expression in (3) yield

$$
\lim _{t \rightarrow 1}(t-1) Z(X, t)=\lim _{t \rightarrow 1} \frac{-h t^{d_{0} e}(t-1)}{q\left(1-t^{e}\right)}
$$

Therefore, $Z(X, t)$ has a pole of order 1 at $t=1$. If we now consider X^{\prime} to be the curve X over $\mathbb{F}_{q^{e}}$, in view of Lemma 2.3, we get

$$
Z\left(X^{\prime}, t^{e}\right)=\prod_{i=1}^{e} Z\left(X, \xi^{i} t\right)
$$

for a e-th primitive root of unity ξ. This equation combined with (4) gives that

$$
Z\left(X^{\prime}, t^{e}\right)=Z(X, t)^{e}
$$

However as we have seen $Z(X, t)$ as well as $Z\left(X^{\prime}, t\right)$ has a pole of order 1 at $t=1$, which gives $e=1$.

We have thus established that $e=1$.
Since $e=1$, we have $d_{0}=2 g-1$. Therefore, the fact that $\operatorname{deg}(f) \leq \max \left\{2+\frac{2 g-2}{e}, d_{0}+1\right\}$ implies that $\operatorname{deg}(f) \leq 2 g$.

If in particular $g=0$ we have

$$
Z(X, t)=\frac{h}{(1-t)(1-q t)}
$$

Finally, if $g \geq 1$ we have $f(0)=1$ and $f(1)=h$ as one can easily see from (2) and (3).
In the course of the proof of Theorem 2.2 we saw that $\operatorname{deg}(\operatorname{Pic}(X))=\mathbb{Z}$. Combining this with Lemma 2.1, we get the following corollary.
Corollary 2.4. All $\operatorname{Pic}^{m}(X)$ have the same non-zero number of elements $h=\left|\operatorname{Pic}^{0}(X)\right|$.
Before proceeding to prove the functional equation, we make some remarks on the existence of divisors with degree one.

Remark 2.5.

- If a curve X has an \mathbb{F}_{q} point, then it has a divisor over \mathbb{F}_{q} of degree 1 . However, the converse is not true.
- If a curve defined over any field K, has genus 0 or 1 then it has an K-point if and only if it has a divisor over K of degree 1 . This is a consequence of the RiemannRoch which in this case implies that every divisor is linearly equivalent to an effective divisor.
- Corollary 2.4 is not true for smooth curves over a number field K. For example we consider the smooth conic $C: x^{2}+y^{2}+z^{2}=0$ over \mathbb{Q}. This conic has no divisor of degree 1. Indeed, if it had, since it has genus 0 it would also have a \mathbb{Q}-point. However C is pointless over \mathbb{Q}. In fact, one can see that since the canonical divisor of C has degree -2 we have $\operatorname{deg}(\operatorname{Pic}(C))=2 \mathbb{Z}$.
- If the curve X has a divisor of degree n and m for two coprime integers n and m, then it has a divisor of degree 1. Most times (more specifically when the genus of the curve is not 1) we can find a divisor of even degree. This is the case because the canonical divisor on curve of genus g has degree $2 g-2$. Thus if a curve of genus not equal to one has a divisor of odd degree, then it also has a divisor of degree 1.

3. Functional equation

We are now going to prove that the Hasse-Weil zeta function of a curve satisfies a functional equation, as stated in the theorem below.
Theorem 3.1. If X is a smooth projective curve over \mathbb{F}_{q} of genus g such that X is irreducible over $\overline{\mathbb{F}_{q}}$, we have

$$
Z\left(X, \frac{1}{q t}\right)=q^{1-g} t^{2-2 g} Z(X, t)
$$

Proof. As in the proof of Theorem 2.2 we write

$$
\begin{aligned}
Z(X, t) & =\sum_{m=0}^{2 g-2} \sum_{[D] \in \operatorname{Pic}^{m}(X)} \frac{q^{\ell([D])}-1}{q-1} t^{m}+\sum_{m \geq 2 g-1} h \frac{q^{m-g+1}-1}{q-1} t^{m} \\
& =\sum_{m=0}^{2 g-2} \sum_{[D] \in \operatorname{Pic}^{m}(X)} \frac{q^{\ell([D])}-1}{q-1} t^{m}+\frac{h}{(q-1)}\left(q^{1-g} \cdot \frac{(q t)^{2 g-1}}{1-q t}-\frac{t^{2 g-1}}{1-t}\right) \\
& =\sum_{m=0}^{2 g-2} \sum_{[D] \in \operatorname{Pic}^{m}(X)} \frac{q^{\ell([D])}}{q-1} t^{m}-\sum_{m=0}^{2 g-2} \frac{h}{q-1} t^{m}+\frac{h}{(q-1)}\left(q^{1-g} \cdot \frac{(q t)^{2 g-1}}{1-q t}-\frac{t^{2 g-1}}{1-t}\right) \\
& =\sum_{m=0}^{2 g-2} \sum_{[D] \in \operatorname{Pic}^{m}(X)} \frac{q^{\ell([D])}}{q-1} t^{m}+\frac{h}{(q-1)}\left(q^{1-g} \cdot \frac{(q t)^{2 g-1}}{1-q t}-\frac{1}{1-t}\right):=F(t)+G(t),
\end{aligned}
$$

where $F(t)=\sum_{m=0}^{2 g-2} \sum_{[D] \in \operatorname{Pic}^{m}(X)} \frac{q^{\ell([D])}}{q-1} t^{m}$ and $G(t)=\frac{h}{(q-1)}\left(q^{1-g} \cdot \frac{(q t)^{2 g-1}}{1-q t}-\frac{1}{1-t}\right)$.
We now compute

$$
\begin{aligned}
\frac{(q-1)}{h} G(1 / q t) & =q^{1-g} \cdot \frac{t^{1-2 g}}{1-t^{-1}}-\frac{1}{1-(q t)^{-1}} \\
& =\frac{q^{1-g} t^{2-2 g}}{t-1}-\frac{q t}{q t-1} \\
& =t^{2-2 g} q^{1-g}\left(\frac{q^{g} t^{2 g-1}}{1-q t}-\frac{1}{t-1}\right) \\
& =t^{2-2 g} q^{1-g} \frac{q-1}{h} G(t) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
G(1 / q t)=t^{2-2 g} q^{1-g} G(t) \tag{5}
\end{equation*}
$$

Next are going to compute $F(1 / q t)$. We have

$$
F(1 / q t)=\sum_{m=0}^{2 g-2} \sum_{[D] \in \mathrm{Pic}^{m}(X)} \frac{q^{\ell([D])}}{q-1}(q t)^{-m}
$$

In view of Theorem 1.2, we have that the map

$$
\begin{aligned}
\operatorname{Pic}^{m}(X) & \rightarrow \mathrm{Pic}^{2 g-2-m} \\
{[D] } & \mapsto[\mathcal{K}-D],
\end{aligned}
$$

is a bijection. Moreover, as m runs through $\{0, \cdots, 2 g-2\}$ so does $2 g-2-m$. Thus, the sum can be rewritten as

$$
F(1 / q t)=\sum_{m=0}^{2 g-2} \sum_{[D] \in \operatorname{Pic}^{m}(X)} \frac{q^{\ell([\mathcal{K}-D])}}{q-1}(q t)^{m+2-2 g}
$$

Furthermore, Theorem 1.2 yields that $\ell([\mathcal{K}-D])=\ell([D])-(\operatorname{deg}([D])-g+1)$. Therefore, we get

$$
\begin{aligned}
F(1 / q t) & =\sum_{m=0}^{2 g-2} \sum_{[D] \in \operatorname{Pic}^{m}(X)} \frac{q^{\ell([D])-m+g-1}}{q-1}(q t)^{m+2-2 g} \\
& =t^{2-2 g} q^{1-g} \sum_{m=0}^{2 g-2} \sum_{[D] \in \operatorname{Pic}^{m}(X)} \frac{q^{\ell([D])}}{q-1} t^{m} \\
& =t^{2-2 g} q^{1-g} F(t) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
F(1 / q t)=t^{2-2 g} q^{1-g} F(t) \tag{6}
\end{equation*}
$$

Combining (5) and (6) we get

$$
Z(X, 1 / q t)=q^{1-g} t^{2-2 g} Z(X, t) .
$$

The theorem follows.

References

[Must] Mircea Mustata, Zeta functions in algebraic geometry, lecture notes.
[Popa] Mihnea Popa, Modern aspects of the cohomological study of varieties, lecture notes.
Niki Myrto Mavraki, Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada

E-mail address: myrtomav@math.ubc.ca

