Math 538: Problem Set 2 (due 25/1/2017)

Number fields and rings of integers

Let $\mathbb{Q} \subset K \subset L$ be number fields with rings of integers $\mathcal{O}_{K}, \mathcal{O}_{L}$ respectively.

1. (Integers and Units) Let $\alpha \in \mathcal{O}_{L}$.
(a) Show that $\operatorname{Tr}_{K}^{L} \alpha, N_{K}^{L} \alpha \in \mathcal{O}_{K}$.
(b) Show that $\alpha \in \mathcal{O}_{L}^{\times}$is a unit iff $N_{K}^{L} \varepsilon \in \mathcal{O}_{K}^{\times}$.
2. (Ideals)
(a) Let $\alpha \in \mathcal{O}_{L}$. Show that $N_{K}^{L} \alpha \in \alpha \mathcal{O}_{L}$.
(b) Conclude that any non-zero ideal $\mathfrak{a} \triangleleft \mathcal{O}_{L}$ contains an ideal of the form $m \mathcal{O}_{L}, m \in \mathbb{Z} \backslash\{0\}$.
(c) Show that every non-zero ideal of \mathcal{O}_{L} is a free Abelian group of rank $n=[L: \mathbb{Q}]$.
3. (Dedekind) Let $K=\mathbb{Q}(\theta)$ where θ is a root of $f(x)=x^{3}-x^{2}-2 x-8$.
(a) Show that f is irreducible over \mathbb{Q}.
(b) Verify that $\eta=\frac{\theta^{2}+\theta}{2}$ satisfies $\eta^{3}-3 \eta^{2}-10 \eta-8=0$.
(c) Show that $1, \theta, \eta$ are linearly independent over \mathbb{Q}.
(d) Let $M=\mathbb{Z} \oplus \mathbb{Z} \boldsymbol{\theta} \oplus \mathbb{Z} \eta$ and let $N=\mathbb{Z}[\boldsymbol{\theta}]=\mathbb{Z} \oplus \mathbb{Z} \boldsymbol{\theta} \oplus \mathbb{Z} \boldsymbol{\theta}^{2}$. Show that $N \subset M \subset \mathcal{O}_{K}$.
(e) Calculate $D_{K / \mathbb{Q}}(M), D_{K / \mathbb{Q}}(N)$ (hint: $D_{K / \mathbb{Q}}(N)=-4 \cdot 503$).
(f) Show that $M=\mathcal{O}_{K}$
(g) Let $\delta=A+B \theta+C \eta$ with $A, B, C \in \mathbb{Z}$. Show that $2 \mid d_{K / \mathbb{Q}}(\mathbb{Z}[\boldsymbol{\delta}])$, and conclude that $\mathbb{Z}[\boldsymbol{\delta}] \neq$ \mathcal{O}_{K}.
RMK Meditate on the conclusion of (g).

Generalization: Orders in \mathbb{Q}-algebras

DEFINITION. Let R be a commutative ring. An (associative, unital) R-algebra is a (possibly non-commutative) unital ring A equipped with a ring homomorphism $f: R \rightarrow A$ whose image is central. Equivalently, A is an R-module equipped with an associative, unital product which is R-bilinear.

Definition. Let A be a \mathbb{Q}-algebra. A subring $\mathcal{O} \subset A$ is an order of A if it is the free \mathbb{Z}-module generated by a \mathbb{Q}-basis of A.
4. Fix a finite-dimensional \mathbb{Q}-algebra A.
(a) Show that A contains orders.
(b) Let $\mathcal{O} \subset A$ be an order. Show that every $x \in \mathcal{O}$ is integral over \mathbb{Z}.
(c) Suppose that A is commutative. Show that A has a unique maximal order.
5. Define the trace of $x \in A$ as the trace of left multiplication by x. Given $\left\{x_{i}\right\}_{i=1}^{n} \subset A$ let $D\left(x_{1}, \ldots, x_{n}\right) \in M_{n}(\mathbb{Q})$ be the matrix with i, j entry $\operatorname{Tr}\left(x_{i} x_{j}\right), \Delta\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det} D\left(x_{1}, \ldots, x_{n}\right)$.
(a) Let $\mathcal{O} \subset A$ be an order. Show that $\operatorname{Tr} x \in \mathbb{Z}$ for all $x \in \mathcal{O}$.
(b) Let $\left\{\omega_{i}\right\}_{i=1}^{n} \subset A$ be a \mathbb{Q}-basis. Show that for any $\left\{x_{i}\right\}_{i=1}^{n} \subset A, \Delta\left(x_{1}, \ldots, x_{n}\right)=(\operatorname{det} \alpha)^{2} \Delta\left(\omega_{1}, \ldots, \omega_{n}\right)$ where $\alpha \in M_{n}(\mathbb{Q})$ is the matrix such that $x_{i}=\sum_{k=1}^{n} \alpha_{i k} \omega_{k}$.
COR Either $D=0$ for all n-tuples (we say that the trace form is degenerate) or $D \neq 0$ for all bases (we say that the trace form is non-degenerate). We assume the second case from now on.
(c) Let \mathcal{O} be an order with \mathbb{Z}-basis $\left\{\omega_{i}\right\}_{i=1}^{n}$. Show that the number $\Delta\left(\omega_{1}, \ldots, \omega_{n}\right)$ is a rational integer, independent of the choice of basis. Denote this $\Delta(\mathcal{O})$.
(d) Suppose that $\mathcal{O} \subset \mathcal{O}^{\prime}$ are two orders. Show that $\Delta(\mathcal{O})=\left[\mathcal{O}^{\prime}: \mathcal{O}\right]^{2} \Delta\left(\mathcal{O}^{\prime}\right)$ and deduce that in a non-degenerate \mathbb{Q}-algebra every order is contained in a maximal order.
(e) Construct a degenerate \mathbb{Q}-algebra without maximal orders.

REMARK. We have here a procedure for finding maximal orders in an n-dimensional \mathbb{Q} algebras: start from a \mathbb{Q}-basis containing 1_{A} and scale its elements to obtain a Z-basis for an order \mathcal{O}, say of discriminant $\Delta(\mathcal{O})$. Let \mathcal{O}^{\prime} be an order containing \mathcal{O} with index $d=\left[\mathcal{O}^{\prime}: \mathcal{O}\right]$. Then $d \mathcal{O}^{\prime} \subset \mathcal{O}$ so $\mathcal{O} \subset \mathcal{O}^{\prime} \subset \frac{1}{d} \mathcal{O}$. Now $\frac{1}{d} \mathcal{O} / \mathcal{O} \simeq\left(\frac{1}{d} \mathbb{Z} / \mathbb{Z}\right)^{n} \simeq(\mathbb{Z} / d \mathbb{Z})^{n}$, so the set of \mathbb{Z}-submodules of $\frac{1}{d} \mathcal{O}$ containing \mathcal{O} is finite and can be enumerated explicitely. It remains to check those one-by-one to see if any are orders; since $d^{2} \mid \Delta(\mathcal{O})$ we only have finitely many values of d to check.
6. Now suppose that A is an F-algebra where F is a number field. Let $\mathcal{O} \subset A$ be an order. Show that the \mathcal{O}_{F}-submodule of A generated by \mathcal{O} is an order as well.
COR Every maximal order of A is an \mathcal{O}_{F}-module.
RMK In fact, every order of A which is an \mathcal{O}_{F}-module is a free \mathcal{O}_{F}-module. We may discuss this later.

