Lior Silberman's Math 412: Problem set 10, due 23/11/2016

The exponential

1. Products of absolutely convergent series.
(a) Let V be a normed space, and let $T, S \in \operatorname{End}_{\mathrm{b}}(V)$ commute. Show that $\exp (T+S)=$ $\exp (T) \exp (S)$.
(b) Show that, for appropriate values of $t, \exp (A) \exp (B) \neq \exp (A+B)$ where $A=\left(\begin{array}{ll}0 & t \\ 0 & 0\end{array}\right)$, $B=\left(\begin{array}{cc}0 & 0 \\ -t & 0\end{array}\right)$.

Companion matrices

DEF The companion matrix associated with the polynomial $p(x)=x^{n}-\sum_{i=0}^{n-1} a_{i} x^{i}$ is

$$
C=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 1 \\
a_{0} & a_{1} & \cdots & a_{n-2} & a_{n-1}
\end{array}\right)
$$

2. A sequence $\left\{x_{k}\right\}_{k=0}^{\infty}$ is said to satisfy a linear recurrence relation if for each k,

$$
x_{k+n}=\sum_{i=0}^{n-1} a_{i} x_{k+i}
$$

(a) Define vectors $\underline{v}^{(k)}=\left(x_{k-n+1}, x_{k-n+2}, \ldots, x_{k}\right)$. Show that $\underline{v}^{(k+1)}=C \underline{v}^{(k)}$ where C is the companion matrix.
(b) Find x_{100} if $x_{0}=1, x_{1}=2, x_{2}=3$ and $x_{n}=x_{n-1}+x_{n-2}-x_{n-3}$.

PRAC Find the Jordan canonical form of $\left(\begin{array}{ccc}1 & \\ & & 1 \\ 0 & 0 & 2\end{array}\right)$.
3. Let C be the companion matrix associated with the polynomial $p(x)=x^{n}-\sum_{k=0}^{n-1} a_{k} x^{k}$.
(a) Show that $p(x)$ is the characteristic polynomial of C.
(b) Show that $p(x)$ is also the minimal polynomial.

- For parts (c),(d) fix a non-zero root λ of $p(x)$.
(c) Find (with proof) an eigenvector with eigenvalue λ.
$(* * \mathrm{~d})$ Let g be a polynomial, and let \underline{v} be the vector with entries $v_{k}=\lambda^{k} g(k)$ for $0 \leq k \leq n-1$.
Show that, if the degree of g is small enough (depending on p, λ), then $((C-\lambda) \underline{v})_{k}=$ $\lambda(g(k+1)-g(k)) \lambda^{k}$ and (the hard part) that

$$
((C-\lambda) \underline{v})_{n-1}=\lambda(g(n)-g(n-1)) \lambda^{n-1}
$$

$\left({ }^{* *} \mathrm{e}\right)$ Find the Jordan canonical form of C.

Holomorphic calculus

Let $f(z)=\sum_{m=0}^{\infty} a_{m} z^{m}$ be a power series with radius of convergence R. For a matrix A define $f(A)=\sum_{m=0}^{\infty} a_{m} A^{m}$ if the series converges absolutely in some matrix norm.
5. Let $D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ be diagonal with $\rho(D)<R$ (that is, $\left|\lambda_{i}\right|<R$ for each i). Show that $f(D)=\operatorname{diag}\left(f\left(\lambda_{1}\right), \cdots, f\left(\lambda_{n}\right)\right)$.
6. Let $A \in M_{n}(\mathbb{C})$ be a matrix with $\rho(A)<R$.
(a) [review of power series] Let R^{\prime} satisfy $\rho(A)<R^{\prime}<R$. Show that $\left|a_{m}\right| \leq C\left(R^{\prime}\right)^{-m}$ for some $C>0$.
(b) Using PS8 problem 3(a) show that $f(A)$ converges absolutely with respect to any matrix norm.
(*c) Suppose that $A=S(D+N) S^{-1}$ where $D+N$ is the Jordan form (D is diagonal, N uppertriangular nilpotent). Show that

$$
f(A)=S\left(\sum_{k=0}^{n} \frac{f^{(k)}(D)}{k!} N^{k}\right) S^{-1}
$$

Hint: D, N commute.
RMK1 This gives an alternative proof that $f(A)$ converges absolutely if $\rho(A)<R$, using the fact that $f^{(k)}(D)$ can be analyzed using single-variable methods.
RMK2 Compare your answer with the Taylor expansion $f(x+y)=\sum_{k=0}^{\infty} \frac{f^{(k)}(x)}{k!} y^{k}$.
(d) Apply this formula to find $\exp (t B)$ where B is as in PS9 problem 2.
7. Let $A \in M_{n}(\mathbb{C})$. Prove that $\operatorname{det}(\exp (A))=\exp (\operatorname{Tr} A)$.

Supplementary problems

A. Let $p \in \mathbb{C}[x]$ be a polynomial, let D^{\prime} be the derivative operator for distributions in $C_{\mathrm{c}}^{\infty}(\mathbb{R})^{\prime}$. Show that $\varphi \in C_{\mathrm{c}}^{\infty}(\mathbb{R})^{\prime}$ satisfies $p\left(D^{\prime}\right) \varphi=0$ iff φ is given by integration against a function f such that $p(D) f=0$.

