Lior Silberman's Math 412: Problem set 8, due 9/11/2016

Practice: Norms

P1. Call two norms $\|\cdot\|_{1},\|\cdot\|_{2}$ on V equivalent if there are constants $c, C>0$ such that for all $\underline{v} \in V$,

$$
c\|\underline{v}\|_{1} \leq\|\underline{v}\|_{2} \leq C\|\underline{v}\|_{1} .
$$

(a) Show that this is an equivalence relation.
(b) Suppose the two norms are equivalent and that $\lim _{n \rightarrow \infty}\left\|\underline{v}_{n}\right\|_{1}=0$ (that is, that $\underline{v}_{n} \xrightarrow[n \rightarrow \infty]{\|\cdot\|_{1}} \underline{0}$). Show that $\lim _{n \rightarrow \infty}\left\|\underline{v}_{n}\right\|_{2}=0$ (that is, that $\underline{v}_{n} \xrightarrow[n \rightarrow \infty]{\|\cdot\|_{2}} \underline{0}$).
(*c) Show the converse of (b) also holds. In other words, two norms are equivalent iff they determine the same notion of convergence.

Norms

1. Let $f(x)=x^{2}$ on $[-1,1]$.
(a) For $1 \leq p<\infty$. Calculate $\|f\|_{L^{p}}=\left(\int_{-1}^{1}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}$.
(b) Calculate $\|f\|_{L^{\infty}}=\sup \{|f(x)|:-1 \leq x \leq 1\}$. Check that $\lim _{p \rightarrow \infty}\|f\|_{L^{p}}=\|f\|_{\infty}$.
(c) Calculate $\|f\|_{H^{2}}=\left(\|f\|_{L^{2}}^{2}+\left\|f^{\prime}\right\|_{L^{2}}^{2}+\left\|f^{\prime \prime}\right\|_{L^{2}}^{2}\right)^{1 / 2}$.

SUPP Show that the H^{2} norm is equivalent to the norm $\left(\|f\|_{L^{2}}^{2}+\left\|f^{\prime \prime}\right\|_{L^{2}}^{2}\right)^{1 / 2}$.
2. Let $A \in M_{n}(\mathbb{R})$. Write $\|A\|_{p}$ for its $\ell^{p} \rightarrow \ell^{p}$ operator norm.
(a) Show $\|A\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$.
(b) Show that $\|A\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|$.

RMK See below on duality.
3. The spectral radius of $A \in M_{n}(\mathbb{C})$ is the magnitude of its largest eigenvalue: $\rho(A)=\max \{|\lambda| \lambda \in \operatorname{Spec}(A)\}$.
(a) Show that for any norm $\|\cdot\|$ on F^{n} and any $A \in M_{n}(F), \rho(A) \leq\|A\|$.
(b) Suppose that A is diagonable. Show that there is a norm on F^{n} such that $\|A\|=\rho(A)$.
(*) Show that if A is Hermitian then $\|A\|_{2}=\rho(A)$.
(d) Show that if A, B are similar, and $\|\cdot\|$ is any norm in \mathbb{C}^{n}, then $\lim _{m \rightarrow \infty}\left\|A^{m}\right\|^{1 / m}=\lim _{m \rightarrow \infty}\left\|B^{m}\right\|^{1 / m}$ (in the sense that, if one limit exists, then so does the other, and they are equal).
$\left.{ }^{* *} \mathrm{e}\right)$ Show that for any norm on \mathbb{C}^{n} and any $A \in M_{n}(\mathbb{C})$, we have $\lim _{m \rightarrow \infty}\left\|A^{m}\right\|^{1 / m}=\rho(A)$.
4. The Hilbert-Schmidt norm on $M_{n}(\mathbb{C})$ is $\|A\|_{\mathrm{HS}}=\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}$.

- Show that $\|A\|_{\text {HS }}=\left(\operatorname{Tr}\left(A^{\dagger} A\right)\right)^{1 / 2}$.
(a) Show that this is, indeed, a norm.
(b) Show that $\|A\|_{2} \leq\|A\|_{\text {HS }}$.

Extra credit: Norms and constructions

5. (Direct sum) Let $\left\{\left(V_{i},\|\cdot\|_{i}\right)\right\}_{i=1}^{n}$ be normed spaces, and let $1 \leq p \leq \infty$. For $\underline{v}=\left(\underline{v}_{i}\right) \in \bigoplus_{i=1}^{n} V_{i}$ define

$$
\|\underline{v}\|=\left(\sum_{i=1}^{n}\left\|\underline{v}_{i}\right\|_{i}^{p}\right)^{1 / p}
$$

Show that this defines a norm on $\bigoplus_{i=1}^{n} V_{i}$.
DEF This operation is called the L^{p}-sum of the normed spaces.
6. (Quotient) Let $(V,\|\cdot\|)$ be a normed space, and let $W \subset V$ be a subspace. For $\underline{v}+W \in V / W$ set $\|\underline{v}+W\|_{V / W}=\inf \{\|\underline{v}+\underline{w}\|: \underline{w} \in W\}$.
(a) Show that $\|\cdot\|_{V / W}$ is 1-homogenous and satisfies the triangle inequality (a "seminorm").
(b) Show that $\|v+W\|_{V / W}=0$ iff v is in the closure of W, so that $\|\cdot\|_{V / W}$ is a norm iff W is closed in V.

For duality in norms see problems A, B. Norming tensor product spaces is complicated.

Supplementary problems: Constructions

A. For $\underline{v} \in \mathbb{C}^{n}$ and $1 \leq p \leq \infty$ let $\|\underline{v}\|_{p}$ be as defined in class.
(a) For $1<p<\infty$ define $1<q<\infty$ by $\frac{1}{p}+\frac{1}{q}=1$ (also if $p=1$ set $q=\infty$ and if $p=\infty$ set $q=1$). Given $x \in \mathbb{C}$ let $y(x)=\frac{\bar{x}}{|x|}|x|^{p / q}$ (set $y=0$ if $x=0$), and given a vector $\underline{x} \in \mathbb{C}^{n}$ define a vector yanalogously.
(i) Show that $\|\underline{y}\|_{q}=\|\underline{x}\|_{p}^{p / q}$.
(ii) Show that for this particular choice of $v y,\left|\sum_{i=1}^{n} x_{i} y_{i}\right|=\|\underline{x}\|_{p}\|\underline{y}\|_{q}$
(b) Now let $\underline{u}, \underline{v} \in \mathbb{C}^{n}$ and let $1 \leq p \leq \infty$. Show that $\left|\sum_{i=1}^{n} u_{i} v_{i}\right| \leq\|\underline{u}\|_{p}\|\underline{v}\|_{q}$ (this is called Hölder's inequality).
(c) Conlude that $\|\underline{u}\|_{p}=\max \left\{\left|\sum_{i=1}^{n} u_{i} v_{i}\right| \mid\|\underline{v}\|_{q}=1\right\}$.
(d) Show that $\|\underline{u}\|_{p}$ is a seminorm (hint: $\mathrm{A}(\mathrm{c})$) and then that it is a norm.
(e) Show that $\lim _{p \rightarrow \infty}\|\underline{v}\|_{p}=\|\underline{v}\|_{\infty}$ (this is why the supremum norm is usually called the L^{∞} norm).
B. Let V be a normed space. The operator norm on $V^{*}=\operatorname{Hom}_{\text {cts }}(V, F)$ is called the dual norm.
(a) Let $V=\mathbb{R}^{n}$ and identify V^{*} with \mathbb{R}^{n} via the usual pairing. Show that the norm on V^{*} dual to the ℓ^{1}-norm is the ℓ^{∞} norm and vice versa. Show that the ℓ^{2}-norm is self-dual.
(b) Use $\mathrm{A}(\mathrm{a}),(\mathrm{b})$ to show that the dual to the ℓ^{p} norm on \mathbb{R}^{n} is the ℓ^{q} norm where $\frac{1}{p}+\frac{1}{q}=1$.
(c) Let U be another normed space and let $T: U \rightarrow V$ be bounded. Let $T^{\prime}: V^{\prime} \rightarrow U^{\prime}$ be the algebraic dual map as defined in this course. Show that for every $\underline{v}^{*} \in V^{*} \subset V^{\prime}, T^{\prime} \underline{v}^{*} \in U^{*}$ (that is, it is continuous). We write $T^{*}: V^{*} \rightarrow U^{*}$ for the dual map restricted to continuous functionals.
(d) Show that T^{*} is itself bounded, in that $\left\|T^{*}\right\|_{V^{*} \rightarrow U^{*}} \leq\|T\|_{U \rightarrow V}$.
C. A seminorm on a vector space V is a map $V \rightarrow \mathbb{R}_{\geq 0}$ that satisfies all the conditions of a norm except that it can be zero for non-zero vectors.
(a) Show that for any $f \in V^{\prime}, \varphi(\underline{v})=|f(\underline{v})|$ is a seminorm.
(b) Construct a seminorm on \mathbb{R}^{2} not of this form.
(c) Let Φ be a family of seminorms on V which is pointwise bounded. Show that $\bar{\varphi}(\underline{v})=$ $\sup \{\varphi(\underline{v}) \mid \varphi \in \Phi\}$ is again a seminorm.

Supplementary problem: Continuity

D. Let V, W be normed vector spaces, equipped with the metric topology coming from the norm. Let $T \in \operatorname{Hom}_{F}(V, W)$. Show that the following are equivalent:
(1) T is continuous.
(2) T is continuous at zero.
(3) T is bounded: $\|T\|_{V \rightarrow W}<\infty$, that is: for some $C>0$ and all $\underline{v} \in V,\|T \underline{v}\|_{W} \leq C\|\underline{v}\|_{V}$. Hint: the same idea is used in problem P1

Supplementary problems: Completeness

E. Let $\left\{\underline{v}_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in a normed space. Show that $\left\{\left\|\underline{v}_{n}\right\|\right\}_{n=1}^{\infty} \subset \mathbb{R}_{\geq 0}$ is a Cauchy sequence.
F. Let X be a set. For $1 \leq p<\infty$ set $\ell^{p}(X)=\left\{f:\left.X \rightarrow \mathbb{C}\left|\sum_{x \in X}\right| f(x)\right|^{p}<\infty\right\}$, and also set $\ell^{\infty}(X)=\{f: X \rightarrow \mathbb{C} \mid f$ bounded $\}$.
(a) Show that for $f \in \ell^{p}(X)$ and $g \in \ell^{q}(X)$ we have $f g \in \ell^{1}(X)$ and $\left|\sum_{x \in X} f(x) g(x)\right| \leq\|f\|_{p}\|g\|_{q}$.
(b) Show that $\ell^{p}(X)$ are subspaces of \mathbb{C}^{X}, and that $\|f\|_{p}=\left(\sum_{x \in X}|f(x)|^{p}\right)^{1 / p}$ is a norm on $\ell^{p}(X)$
(c) Let $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \ell^{p}(X)$ be a Cauchy sequence. Show that for each $x \in X,\left\{f_{n}(x)\right\}_{n=1}^{\infty} \subset \mathbb{C}$ is a Cauchy sequence.
(d) Let $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \ell^{p}(X)$ be a Cauchy sequence and let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Show that $f \in$ $\ell^{p}(X)$.
(e) Let $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \ell^{p}(X)$ be a Cauchy sequence. Show that it is convergent in $\ell^{p}(X)$.
G. (The completion) Let (X, d) be a metric space.
(a) Let $\left\{x_{n}\right\},\left\{y_{n}\right\} \subset X$ be two Cauchy sequences. Show that $\left\{d\left(x_{n}, y_{n}\right)\right\}_{n=1}^{\infty} \subset \mathbb{R}$ is a Cauchy sequence.
DEF Let (\tilde{X}, \tilde{d}) denote the set of Cauchy sequences in X with the distance $\tilde{d}(\underline{x}, \underline{y})=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)$.
(b) Show that \tilde{d} satisfies all the axioms of a metric except that it can be non-zero for distinct sequences.
(c) Show that the relation $\underline{x} \sim \underline{y} \Longleftrightarrow \tilde{d}(\underline{x}, \underline{y})=0$ is an equivalence relation.
(d) Let $\hat{X}=\tilde{X} / \sim$ be the set of equivalence classes. Show that $\tilde{d}: \tilde{X} \times \tilde{X} \rightarrow \mathbb{R}_{\geq 0}$ descends to a well-defined function $\hat{d}: \hat{X} \times \hat{X} \rightarrow \mathbb{R}_{\geq 0}$ which is a metric.
(e) Show that (\hat{X}, \hat{d}) is a complete metric space.

DEF For $x \in X$ let $l(x) \in \hat{X}$ be the equivalence class of the constant sequence x.
(f) Show that $\imath: X \rightarrow \hat{X}$ is an isometric embedding with dense image.
(g) (Universal property) Show that for any complete metric space (Y, d_{Y}) and any uniformly continuous $f: X \rightarrow Y$ there is a unique extension $\hat{f}: \hat{X} \rightarrow Y$ such that $\hat{f} \circ \boldsymbol{\imath}=f$.
(h) Show that triples $(\hat{X}, \hat{d}, \imath)$ satisfying the property of (g) are unique up to a unique isomorphism.

Hint for $\mathrm{F}(\mathrm{d})$: Suppose that $\|f\|_{p}=\infty$. Then there is a finite set $S \subset X$ with $\left(\sum_{x \in S}|f(x)|^{p}\right)^{1 / p} \geq$ $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|+1$.

