Lior Silberman's Math 412: Problem Set 6 (due 26/10/2016)

P1. (Minimal polynomials)

Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix}$$

- (a) Find the minimal polynomial of A and show that the minimal polynomial of B is $x^2 (x-1)^2$.
- (b) Find a 3×3 matrix whose minimal polynomial is x^2 .
- P2. For each of A, B find its eigenvalues and the corresponding generalized eigenspaces.

Triangular matrices

- P3. Let L be a lower-triangular square matrix with non-zero diagonal entries. Find a formula for its inverse.
- 1. Let U be an upper-triangular square matrix with non-zero diagonal entries.

- (a) Give a "backward-substitution" algorithm for solving $U\underline{x} = \underline{b}$ efficiently.
- (b) Explicitely use your algorithm to solve $\begin{pmatrix} 1 & 4 & 5 \\ & 2 & 6 \\ & & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$.
- (c) Give a formula for U^{-1} , proving in particular that U is invertible and that U^{-1} is again upper-triangular.
- RMK We'll see that if $\mathcal{A} \subset M_n(F)$ is a subspace containing the identity matrix and closed under matrix multiplication, then the inverse of any matrix in \mathcal{A} belongs to \mathcal{A} . This applies, in particular, to the set of upper-triangular matrices.

The minimal polynomial

- 2. Let $D \in M_n(F) = \text{diag}(a_1, \dots, a_n)$ be diagonal.
 - (a) For any polynomial $p \in F[x]$ show that $p(D) = \text{diag}(p(a_1), \dots, p(a_n))$.
 - (b) Show that the minimal polynomial of *D* is $m_D(x) = \prod_{j=1}^r (x a_{i_j})$ where $\{a_{i_j}\}_{j=1}^r$ is an enumeration of the distinct values among the a_i .
 - (c) Show that (over any field) the matrix *B* from problem P1 is not similar to a diagonal matrix.
 - (d) Now suppose that U is an upper-triangular matrix with diagonal D. Show that for any $p \in F[x]$, p(U) has diagonal p(D). In particular, $m_D|m_U$.
- 3. Let $T \in \text{End}(V)$ be diagonable. Show that every generalized eigenspace is simply an eigenspace.
- 4. Let $S \in \text{End}(U)$, $T \in \text{End}(V)$. Let $S \oplus T \in \text{End}(U \oplus V)$ be the "block-diagonal map".
 - (a) For $f \in F[x]$ show that $f(S \oplus T) = f(S) \oplus f(T)$.
 - (b) Show that $m_{S\oplus T} = \text{lcm}(m_S, m_T)$ ("least common multiple": the polynomial of smallest degree which is a multiple of both).
 - (c) Conclude that $\operatorname{Spec}_F(S \oplus T) = \operatorname{Spec}_F(S) \cup \operatorname{Spec}_F(T)$.

RMK See also problem B below.

Extra credit

- 5. Let $R \in \text{End}(U \oplus V)$ be "block-upper-triangular", in that $R(U) \subset U$.
 - (a) Define a "quotient linear map" $\overline{R} \in \text{End}(U \oplus V/U)$.
 - (b) Let *S* be the restriction of *R* to *U*. Show that both m_S , $m_{\bar{R}}$ divide m_R .
 - (c) Let $f = \operatorname{lcm}[m_S, m_{\bar{R}}]$ and set T = f(R). Show that $T(U) = \{\underline{0}\}$ and that $T(V) \subset U$.
 - (d) Show that $T^2 = 0$ and conclude that $f \mid m_R \mid f^2$.
 - (e) Show that $\operatorname{Spec}_F(R) = \operatorname{Spec}_F(S) \cup \operatorname{Spec}_F(\overline{R})$.

Supplementary problems

- A. (Cholesky decomposition)
 - (a) Let A be a positive-definite square matrix. Show that $A = LL^{\dagger}$ for a unique lower-triangular matrix L with positive entries on the diagonal.

DEF For
$$\varepsilon \in \pm 1$$
 define $D^{\varepsilon} \in M_n(\mathbb{R})$ by $D_{ij}^{\varepsilon} = \begin{cases} \varepsilon & j = i + \varepsilon \\ -\varepsilon & j = i \\ 0 & j \neq i, i + \varepsilon \end{cases}$ and let $A = -D^-D^+$ be the

(positive) discrete Laplace operator.

- (b) To $f \in C^{\infty}(0,1)$ associate the vector $\underline{f} \in \mathbb{R}^n$ where $\underline{f}(i) = f(\frac{i}{n})$. Show that $\frac{1}{n}D^+\underline{f}$ and $\frac{1}{n}D^{-}\underline{f}$ are both close to \underline{f}' (so that both are discrete differentiation operators). Show that $\frac{1}{n^2}D^-D^+$ is an approximation to the second derivative.
- (c) Find a lower-triangular matrix L such that $LL^{\dagger} = A$.
- B. Let $T \in \text{End}(V)$. For monic irreducible $p \in F[x]$ define $V_p = \{\underline{v} \in V \mid \exists k : p(T)^k \underline{v} = \underline{0}\}$.
 - (a) Show that V_p is a T-invariant subspace of V and that $m_{T \mid V_p} = p^k$ for some $k \ge 0$, with $k \ge 1$ iff $V_p \ne \{\underline{0}\}$. Conclude that $p^k | m_T$.
 - (b) Show that if $\{p_i\}_{i=1}^r \subset F[x]$ are distinct monic irreducibles then the sum $\bigoplus_{i=1}^r V_{p_i}$ is direct. (c) Let $\{p_i\}_{i=1}^r \subset F[x]$ be the prime factors of $m_T(x)$. Show that $V = \bigoplus_{i=1}^r V_{p_i}$.

 - (d) Suppose that $m_T(x) = \prod_{i=1}^r p_i^{k_i}(x)$ is the prime factorization of the minimal polynomial. Show that $V_{p_i} = \operatorname{Ker} p_i^{k_i}(T)$.
- C. (more on extension of scalars) Let $F \subset K$ be fields and let V be an F-vectorspace. Let $V_K =$ $K \otimes_F V$ thought of as a *K*-vectorpace.
 - (a) (Repeat of supplement to Problem 1 of PS5) For $T \in \text{Hom}_F(U,V)$ let $T_K = \text{Id}_K \otimes_F T \in$ $\operatorname{Hom}_F(U_K, V_K)$ be the tensor product map. Show that $T_K \in \operatorname{Hom}_K(U_K, V_K)$ (that is, K linear and not only *F*-linear).
 - (b) Let $\{\underline{u}_j\}_{j\in J} \subset U, \{\underline{v}_i\}_{i\in I} \subset V$ be a bases. Show that the matrix of T_K wrt the bases $\{1 \otimes \underline{u}_j\}_{j \in J} \subset U_K, \{1 \otimes \underline{v}_i\}_{i \in I} \subset V_K \text{ is the matrix of } T \text{ wrt } \{\underline{u}_j\}_{j \in J}, \{\underline{v}_i\}_{i \in I}.$
 - (c) Show that the minimal and charcteristic polynomials of T_K are those of T (through the inclusion of F in K).