Lior Silberman's Math 412: Problem Set 5 (due 12/10/2016)

Practice

- P1. Let $U = \operatorname{Span}_F \{\underline{u}_1, \underline{u}_2\}$ be two-dimensional. Show that the element $\underline{u}_1 \otimes \underline{u}_1 + \underline{u}_2 \otimes \underline{u}_2 \in U \otimes U$ is not a pure tensor, that is not of the form $\underline{u} \otimes \underline{u}$ for any $\underline{u} \in U$.
- P2. Let $\iota: U \times V \to U \otimes V$ be the standard inclusion map $(\iota(\underline{u},\underline{v}) = \underline{u} \otimes vv)$. Show that $\iota(\underline{u},\underline{v}) = 0$ iff $\underline{u} = \underline{0}_U$ or $\underline{v} = \underline{0}_V$ and that for non-zero vectors we have $\iota(\underline{u},\underline{v}) = \iota(\underline{u}',\underline{v}')$ iff $\underline{u}' = \alpha\underline{u}$ and $\underline{v}' = \alpha^{-1}\underline{v}$ for some $\alpha \in F^{\times}$.
- P3. Let U, V be finite-dimensional spaces and let $A \in \text{End}(U)$, $B \in \text{End}(V)$.
 - (a) Construct a map $A \oplus B \in \text{End}_F(U \oplus V)$ restricting to A, B on the images of U, V in $U \oplus V$.
 - (b) Show that $Tr(A \oplus B) = Tr(A) + Tr(B)$.
 - (c) Evaluate $\det(A \oplus B)$.

Tensor products of maps

- 1. Let U, V be finite-dimensional spaces, and let $A \in \text{End}(U)$, $B \in \text{End}(V)$.
 - (a) Show that $(\underline{u},\underline{v}) \mapsto (A\underline{u}) \otimes (B\underline{v})$ is bilinear, and obtain a linear map $A \otimes B \in \operatorname{End}(U \otimes V)$.
 - (b) Suppose A, B are diagonable. Using an appropriate basis for $U \otimes V$, Obtain a formula for $det(A \otimes B)$ in terms of det(A) and det(B).
 - (c) Extending (a) by induction, show for any $A \in \operatorname{End}_F(V)$, the map $A^{\otimes k}$ induces maps $\operatorname{Sym}^k A \in \operatorname{End}(\operatorname{Sym}^k V)$ and $\bigwedge^k A \in \operatorname{End}(\bigwedge^k V)$.
 - (*d) Show that the formula of (b) holds for all A, B.
- 2. Suppose $\frac{1}{2} \in F$, and let *U* be finite-dimensional. Construct isomorphisms

$$\{ \text{ symmetric bilinear forms on } U \} \leftrightarrow \left(\operatorname{Sym}^2 U \right)' \leftrightarrow \operatorname{Sym}^2 \left(U' \right).$$

Nilpotence

- 3. Let $U \in M_n(F)$ be *strictly upper-triangular*, that is upper triangular with zeroes along the diagonal. Show that $U^n = 0$ and construct such U with $U^{n-1} \neq 0$.
- 4. Let *V* be a finite-dimensional vector space, $T \in \text{End}(V)$.
 - (*a) Show that the following statements are equivalent:
 - (1) $\forall v \in V : \exists k > 0 : T^k v = 0;$ (2) $\exists k > 0 : \forall v \in V : T^k v = 0.$

DEF A linear map satisfying (2) is called *nilpotent*. Example: see problem 5.

- (b) Find nilpotent $A, B \in M_2(F)$ such that A + B isn't nilpotent.
- (c) Suppose that $A, B \in \text{End}(V)$ are nilpotent and that A, B commute. Show that A + B is nilpotent.

Extra credit

- 5. Let *V* be finite-dimensional.
 - (a) Construct an isomorphism $U \otimes V' \to \operatorname{Hom}_F(V, U)$.
 - (b) Define a map Tr: $U \otimes U' \to F$ extending the evaluation pairing $U \times U' \to F$.
 - DEF The *trace* of $T \in \text{Hom}_F(U, U)$ is given by identifying T with an element of $U \otimes U'$ via (a) and then applying the map of (b).
 - (c) Let $T \in \operatorname{End}_F(U)$, and let A be the matrix of T with respect to the basis $\{\underline{u}_i\}_{i=1}^n \subset U$. Show that $\operatorname{Tr} T = \sum_{i=1}^n A_{ii}$.

RMK This shows that similar matrices have the same trace!

(d) Solve P3(b) from this point of view.

Supplementary problems

- A. (The tensor algebra) Fix a vector space U.
 - (a) Extend the bilinear map $\otimes : \overline{U}^{\otimes n} \times U^{\otimes m} \to U^{\otimes n} \otimes U^{\otimes m} \simeq U^{\otimes (n+m)}$ to a bilinear map $\otimes : \bigoplus_{n=0}^{\infty} U^{\otimes n} \times \bigoplus_{n=0}^{\infty} U^{\otimes n} \to \bigoplus_{n=0}^{\infty} U^{\otimes n}$.
 - (b) Show that this map \otimes is associative and distributive over addition. Show that $1_F \in F \simeq U^{\otimes 0}$ is an identity for this multiplication.

DEF This algebra is called the *tensor algebra* T(U).

- (c) Show that the tensor algebra is *free*: for any *F*-algebra *A* and any *F*-linear map $f: U \to A$ there is a unique *F*-algebra homomorphism $\bar{f}: T(U) \to A$ whose restriction to $U^{\otimes 1}$ is f.
- B. (The symmetric algebra). Fix a vector space U.
 - (a) Endow $\bigoplus_{n=0}^{\infty} \operatorname{Sym}^n U$ with a product structure as in 3(a).
 - (b) Show that this creates a commutative algebra Sym(U).
 - (c) Fixing a basis $\{\underline{u}_i\}_{i\in I} \subset U$, construct an isomorphism $F\left[\{x_i\}_{i\in I}\right] \to \operatorname{Sym}^* U$.

RMK In particular, Sym* (U') gives a coordinate-free notion of "polynomial function on U".

- (d) Let $I \triangleleft T(U)$ be the two-sided ideal generated by all elements of the form $\underline{u} \otimes \underline{v} \underline{v} \otimes \underline{u} \in U^{\otimes 2}$. Show that the map $\operatorname{Sym}(U) \to T(U)/I$ is an isomorphism.
- RMK When the field F has finite characteristic, the correct definition of the symmetric algebra (the definition which gives the universal property) is $\operatorname{Sym}(U) \stackrel{\text{def}}{=} T(U)/I$, not the space of symetric tensors.
- C. Let *V* be a (possibly infinite-dimensional) vector space, $A \in \text{End}(V)$.
 - (a) Show that the following are equivalent for $\underline{v} \in V$:
 - (1) $\dim_F \operatorname{Span}_F \left\{ A^n \underline{v} \right\}_{n=0}^{\infty} < \infty;$
 - (2) there is a finite-dimensional subspace $\underline{v} \in W \subset V$ such that $AW \subset W$.

DEF Call such \underline{v} locally finite, and let V_{fin} be the set of locally finite vectors.

- (b) Show that V_{fin} is a subspace of V.
- (c) Call *A locally nilpotent* if for every $\underline{v} \in V$ there is $n \ge 0$ such that $A^n \underline{v} = \underline{0}$ (condition (1) of 5(a)). Find a vector space *V* and a locally nilpotent map $A \in \operatorname{End}(V)$ which is not nilpotent.
- (*d) A is called *locally finite* if $V_{\text{fin}} = V$, that is if every vector is contained in a finite-dimensional A-invariant subspace. Find a space V and locally finite linear maps $A, B \in \text{End}(V)$ such that A + B is not locally finite.