Math 412: Problem Set 3 (due 28/9/2016)

Practice

P1 Let
$$\underline{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\underline{u}_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$, $\underline{u}_3 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$, $\underline{u} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ as vectors in \mathbb{R}^3 .

- (a) Construct an explicit linear functional $\varphi \in (\mathbb{R}^3)'$ vanishing on $\underline{u}_1, \underline{u}_2$.
- (b) Show that $\{u_1, u_2, u_3\}$ is a basis on \mathbb{R}^3 and find its dual basis.
- (c) Evaluate the dual basis at \underline{u} .
- P2 Let *V* be *n*-dimensional and let $\{\varphi_i\}_{i=1}^m \in V'$.
 - (a) Show that if m < n there is a non-zero $\underline{v} \in V$ such that $\varphi_i(\underline{v}) = 0$ for all i. Interpret this as a statement about linear equations.
 - (b) When is it true that for each $\underline{x} \in F^m$ there is $\underline{y} \in V$ such that for all i, $\varphi_i(\underline{y}) = x_i$?
- P3 Let U,V be finite-dimensional vector spaces and let $L \in \operatorname{Hom}_F(U,V)$. Consider the pairing $V' \times U \to F$ given by $\langle \varphi, \underline{u} \rangle_L = \varphi(L\underline{u})$. Let $\{\underline{u}_j\} \subset U, \{\underline{v}_i\} \subset V$ be bases and let $\{\varphi_i\} \subset V'$ be the basis dual to $\{\underline{v}_i\}$. Show that the matrix of L as a linear map $U \to V$ is the same as the Gram matrix of the pairing $\langle \cdot, \cdot \rangle_L$.

Example of linear functionals: Banach limits

Recall that $\ell^{\infty} \subset \mathbb{R}^{\mathbb{N}}$ denote the set of *bounded* sequences (the sequences \underline{a} such that for some M we have $|a_i| \leq M$ for all i). Let $S \colon \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ be the *shift* map $(S\underline{a})_n = \underline{a}_{n+1}$. A subspace $U \subset \mathbb{R}^{\mathbb{N}}$ is *shift-invariant* if $S(U) \subset U$. If U is shift-invariant a function F with domain U is called *shift-invariant* if $F \circ S = F$ (example: the subset $C \subset \mathbb{R}^{\mathbb{N}}$ of convergent sequences is a shift-invariant subspace, as is the functional lim: $C \to \mathbb{R}$ assigning to every sequence its limit).

Note that P4 is a practice problem!

- P4 (Useful facts)
 - (a) Show that ℓ^{∞} is a subspace of $\mathbb{R}^{\mathbb{N}}$.
 - (b) Show that $S: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ is linear and that $S(\ell^{\infty}) = \ell^{\infty}$.
 - (c) Let $U \subset \mathbb{R}^{\mathbb{N}}$ be a shift-invariant subspace. Show that the set $U_0 = \{S\underline{a} \underline{a} \mid \underline{a} \in U\}$ is a subspace of U.
 - (d) In the case $U = \mathbb{R}^{\oplus \mathbb{N}}$ of sequences of finite support, show that $U_0 = U$.
 - (e) Let Z be an auxiliary vector space. Show that $F \in \text{Hom}(U, \mathbb{Z})$ is shift-invariant iff F vanishes on U_0 .
- 1. Let $W = \{S\underline{a} \underline{a} \mid \underline{a} \in \ell^{\infty}\} \subset \ell^{\infty}$. Let 1 be the sequences everywhere equal to 1.
 - (a) Show that the sum $W + \mathbb{R}\mathbb{1} \subset \ell^{\infty}$ is direct and construct an *S*-invariant functional $\varphi \colon \ell^{\infty} \to \mathbb{R}$ such that $\varphi(\mathbb{1}) = 1$ (*Hint*: PS2 problem 5(b)).
 - (b) (Strengthening) For $\underline{a} \in \ell^{\infty}$ set $\|\underline{a}\|_{\infty} = \sup_{n} |a_{n}|$. Show that if $\underline{a} \in W$ and $x \in \mathbb{R}$ then $\|\underline{a} + x\mathbb{1}\|_{\infty} \ge |x|$. (Hint: consider the average of the first N entries of the vector $\underline{a} + x\mathbb{1}$).
 - SUPP Let $\varphi \in (\ell^{\infty})'$ be shift-invariant, positive (if $a_i \geq 0$ for all i then $\varphi(\underline{a}) \geq 0$), and satisfy $\varphi(\mathbb{1}) = 1$. Show that $\liminf_{n \to \infty} a_n \leq \varphi(\underline{a}) \leq \limsup_{n \to \infty} a_n$ and conclude that the restriction of φ to c is the usual limit.

34

- 2. ("choose one") Let $\varphi \in (\ell^{\infty})'$ satisfy $\varphi(\mathbb{1}) = 1$. Let \underline{a} be the sequence $a_n = \frac{1 + (-1)^n}{2}$.
 - (a) Suppose that φ is shift-invariant. Show that $\varphi(\underline{a}) = \frac{1}{2}$.
 - (b) Suppose that φ respects pointwise multiplication (if $z_n = x_n y_n$ then $\varphi(\underline{z}) = \varphi(\underline{x})\varphi(y)$). Show that $\varphi(a) \in \{0, 1\}$.

Duality and bilinear forms

- 3. (The dual map) Let U, V, W be vector spaces, and let $T \in \text{Hom}(U, V)$, and let $S \in \text{Hom}(V, W)$.
 - (a) (The abstract meaning of transpose) Suppose U, V be finite-dimensional with bases $\{\underline{u}_j\}_{j=1}^m \subset$ $U, \{\underline{v}_i\}_{i=1}^n \subset V$, and let $A \in M_{n,m}(F)$ be the matrix of T in those bases. Show that the matrix of the dual map $T' \in \operatorname{Hom}(V',U')$ with respect to the dual bases $\left\{\underline{u}_j'\right\}_{i=1}^m \subset U'$, $\{\underline{v}_i'\}_{i=1}^n \subset V'$ is the transpose tA . (b) Show that (ST)' = T'S'. It follows that ${}^t(AB) = {}^tB^tA$.
- 4. Let $F^{\oplus \mathbb{N}}$ denote the space of sequences of finite support. Construct a non-degenerate pairing $F^{\oplus \mathbb{N}} \times F^{\mathbb{N}} \to F$, giving a concrete realization of $(F^{\oplus \mathbb{N}})'$.
- 5. Let $C_c^{\infty}(\mathbb{R})$ be the space of compactly supported smooth functions on \mathbb{R} (that is, functions which have derivatives of all orders and which are identically zero outside some interval), and let $D\colon C^\infty_{\rm c}(\mathbb R)\to C^\infty_{\rm c}(\mathbb R)$ be the differentiation operator $\frac{\rm d}{{\rm d}x}$. For a reasonable function f on $\mathbb R$ define a functional φ_f on $C^\infty_{\rm c}(\mathbb R)$ by $\varphi_f(g)=\int_{\mathbb R} fg\,{\rm d}x$ (note that f need only be integrable, not continuous).
 - (a) Show that if f is continuously differentiable then $D'\varphi_f = \varphi_{-Df}$. (Hint: this expresses a basic fact from calculus)
 - DEF For this reason one usually extends the operator D to the dual space by $D\varphi \stackrel{\text{def}}{=} -D'\varphi$, thus giving a notion of a "derivative" for non-differentiable and even discontinuous functions.
 - (b) Let the "Dirac delta" $\delta \in C_c^{\infty}(\mathbb{R})'$ be the evaluation functional $\delta(f) = f(0)$. Express $(D\delta)(f)$ in terms of f.
 - (c) Let φ be a linear functional such that $D'\varphi = 0$. Show that for some constant $c, \varphi = \varphi_{c1}$.

Supplement: The support of distributions

- A. (This is a mostly a problem in analysis) Let $\varphi \in C_c^{\infty}(\mathbb{R})'$.
 - DEF Let $U \subset \mathbb{R}$ be open. Say that φ is supported away from U if for any $f \in C_c^{\infty}(U)$, $\varphi(f) = 0$. The support supp(φ) is the complement the union of all such U.
 - (a) Show that supp (φ) is closed, and that φ is supported away from $\mathbb{R} \setminus \text{supp}(\varphi)$.
 - (b) Show that supp(δ) = {0} (see problem 5(b)).
 - (c) Show that $supp(D\varphi) \subset supp(\varphi)$ (note that this is well-known for functions).
 - (d) Show that $D\delta$ is not of the form φ_f for any function f.