Lior Silberman's Math 412: Supplementary Problem Set on the Rational Canonical Form

We give an alternative construction of a canonical form over a general field F. When F is algebraically closed this reduced to the Jordan canonical form. To start fix a finite-dimensional vector space V and $T \in \operatorname{End}_{F}(V)$.

1. (Generalized eigenspaces) For monic irreducible $p \in F[x]$ define $V_{p}=\left\{\underline{v} \in V \mid \exists k: p(T)^{k} \underline{v}=\underline{0}\right\}$.
(a) Show that V_{p} is a T-invariant subspace of V and that $m_{T \mid V_{p}}=p^{k}$ for some $k \geq 0$, with $k \geq 1$ iff $V_{p} \neq\{\underline{0}\}$. Conclude that $p^{k} \mid m_{T}$.
(b) Let $f \in F[x]$. Show that the restriction $f(T) \upharpoonright V_{p}$ is invertible iff $p \nmid f$.
(c) Show that if $\left\{p_{i}\right\}_{i=1}^{r} \subset F[x]$ are distinct monic irreducibles then the sum $\bigoplus_{i=1}^{r} V_{p_{i}}$ is direct.
(d) Let $\left\{p_{i}\right\}_{i=1}^{r} \subset F[x]$ be the prime factors of $m_{T}(x)$. Show that $V=\bigoplus_{i=1}^{r} V_{p_{i}}$.
(e) Suppose that $m_{T}(x)=\prod_{i=1}^{r} p_{i}^{k_{i}}(x)$ is the prime factorization of the minimal polynomial. Show that $V_{p_{i}}=\operatorname{Ker} p_{i}^{k_{i}}(T)$ and that $m_{T \mid V_{p_{i}}}=p_{i}^{k_{i}}$.

We can now concentrate on each $V_{p_{i}}$, so from now on we may assume $m_{T}(x)=p(x)^{k}$ with p irreducible of degree d.
2. Let $K=F[x] /(p(x))$ (quotient of the ring $F[x]$ by the ideal $p F[x]$).
(a) Show that K is a field, generated over K by the image of the polynomial $x \in F[x]$ (write β for this image, so that $K=F(\beta)$).
(b) Let W be an F-vector space and $T \in \operatorname{End}_{F}(W)$ with minimal polynomial p. Show that W has the structure of a K-vector space where multiplication by elements of F still has the same meaning and such that $\beta \underline{w}=T \underline{w}$.
Hint: for $f \in F[x]$ set $(f+(p(x)) \cdot \underline{w}=f(T) \underline{w}$. Start by checking that this is well-defined (independent of the choice of f).

- Recall now that we are working in a vector space V such that $p(T)^{k}=0$ for some k.
(c) Let $W_{i}=\operatorname{Im}\left(p(T)^{i}\right) \cap \operatorname{Ker}(p(T))$. Show that $\{0\}=W_{k} \subset \cdots \subset W_{0}=\operatorname{Ker}(p(T))$ and that each W_{i} is a K-subspace of W_{0} for the vector space structure of 2(b).

3. (Chains and the basis)

DEF Let $B \subset V$ be a set of vectors such that $p(T) B \subset B \cup\{\underline{0}\}$. Call B "linearly independent over K " if for any assignment of polynomials $f_{\underline{v}} \in F[x]^{<d}$ (degrees strictly less than that of p) to vectors $\underline{v} \in B$, having $\sum_{\underline{v} \in B} f_{\underline{v}}(T) \underline{v}=\underline{0}$ forces $f_{\underline{v}}=0$ for each $v v$.
(a) Show that the set B is "linearly independent over K " iff $B \cap \operatorname{Ker}(p(T))$ is linearly independent over K in the sense of 2(b).
(b) Let $B \subset V$ satisfy $p(T) B \subset B \cup\{\underline{0}\}$ and suppose that $B \cap \operatorname{Ker}(p(T))$ is linearly independent over K. Show that $C=\left\{T^{\ell} \underline{v} \mid \underline{v} \in B, 0 \leq \ell<d\right\} \subset V$ is linearly independent over F.
(c) Choose a K-basis $A \subset W_{0}=\operatorname{Ker}(p(T))$ subordinate to the filtration by the W_{i} (that is, $A \cap W_{i}$ is a basis for W_{i} for each i) by choosing a K-basis for W_{k-1}, extending it to a basis of W_{k-2} and so on. Write $A=\left\{\underline{v}_{i}\right\}_{i \in I}$ and let k_{i} be such that \underline{v}_{i} was chosen in $W_{k_{i}-1}$ so that $\underline{v}_{i} \in \operatorname{Im}\left(p(T)^{k_{i}-1}\right)$. In that case choose $\underline{v}_{i, k} \in V$ such that $p(T)^{k-1} \underline{v}_{i, k}=\underline{v}_{i}$ and let $\underline{v}_{i, j}=p(T)^{k-j} \underline{v}_{i, k}$ for $1 \leq j \leq k$. Show that $B=\left\{\underline{v}_{i, j} \mid i \in I, 1 \leq j \leq k_{i}\right\}$ is "linearly independent over $K^{\prime \prime}$.
(d) Let $\underline{v}_{i, j, \ell}=T^{\ell} \underline{v}_{i, j}$. Show that $C=\left\{\underline{v}_{i, j, \ell} \mid \underline{v}_{i, j} \in B, 0 \leq \ell<d\right\}$ is an F-basis for V.
(e) Let $p(x)=x^{d}-\sum_{i=0}^{d-1} a_{i} x^{i}$. Show that

$$
T \underline{v}_{i, j, \ell}= \begin{cases}\underline{v}_{i, j, \ell+1} & \ell<d-1 \\ \sum_{\ell=0}^{d-1} a_{\ell} \underline{v}_{i, j, \ell}+\underline{v}_{i, j-1,0} & \ell=d-1, j>1 \\ \sum_{\ell=0}^{d-1} a_{\ell \underline{v}_{i, 1, \ell}} & \ell=d-1, j=1\end{cases}
$$

4. (Rational canonical form)
(a) Show that $\operatorname{Span}_{F}\left\{\underline{v}_{i, j, \ell} \mid 1 \leq j \leq k_{i}, 0 \leq \ell<d\right\}$ is T-invariant. Call its span a block. Show that the matrix of T on the block depends only on T and k_{i},
(b) Putting together the blocks for distinct p show that any $T \in \operatorname{End}_{F}(V)$ we can decompose V as the direct sum of blocks for various polynomials. The resulting matrix representation is called the rational canonical form.
(c) Show that in any two such decompositions the set of polynomials and the number of blocks of each size is uniquely determined. Conclude that we have a bijection between similarity classes of matrices in $M_{n}(F)$ and rational canonical forms.
5. (Conclusions)
(a) Show that if all the roots of $m_{T}(x)$ lie in F, the rational canonical form is the Jordan form.
(b) Let $A, B \in M_{n}(F)$ be two matrices and suppose that for some field $\bar{F} \supset F$ there is $S \in$ $\mathrm{GL}_{n}(\bar{F})$ such that $S A S^{-1}=B$. Show that A, B have the same rational canonical form, and conclude that two matrices are similar over an extension field iff they are similar over the ground field.
6. (conjugacy classes in $\left.\mathrm{GL}_{n}(F)\right)$ Let F be a field, and let $G=\mathrm{GL}_{n}(F)$.
(a) Enumerate the conjugacy classes in $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. Note that $p=2$ is special.
(b) Enumerate the conjugacy classes of $\mathrm{GL}_{3}\left(\mathbb{F}_{p}\right)$. Which primes require separate treatment?
