Math 412, Spring Term 2014 Midterm Exam

February $24^{\text{th}},2014$

Student number:

LAST name:

First name:

Signature:

Instructions

- Do not turn this page over. You will have 50 minutes for the exam (between 11:00-11:50)
- There are 40 points total divided into 4 parts.
- You may not use books, notes or electronic devices of any kind.
- Write in complete English sentences. Proofs should be clear and concise.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.
- There is an extra blank page at the end of the exam.

1a	/10
1b	/10
2	/10
3	/10
Total	/40

1 A pairing (20 points)

Let $U = \mathbb{R}^3 / \mathbb{R}(1, 1, 1)$ and let $V = \Big\{ \underline{y} \in \mathbb{R}^3 \mid \sum_{i=1}^3 y_i = 0 \Big\}.$

a. Show that $(\underline{x} + \mathbb{R}(1, 1, 1), \underline{y}) = \sum_{i=1}^{3} x_i y_i$ defines a bilinear form on $U \times V$ (10 points)

b. Show that the form is non-degenerate (10 points)

2 Alternating forms (10 points)

Suppose that $\frac{1}{2} \in F$ and let U be a vector space over F. Construct a natural bijection {alternating bilinear forms on U} $\leftrightarrow (\bigwedge^2 U)'$.

3 Problem (10 points)

Let V be a finite-dimensional vector space, and let $T \in \text{End}_F(V)$ be diagonable. Show that the dual map T' is also diagonable.

(this page intentionally left blank)