Math 412, Spring Term 2014 Midterm Exam

February $24^{\text {th }}, 2014$

## Student number:

LAST name:

## First name:

## Signature:

## Instructions

- Do not turn this page over. You will have 50 minutes for the exam (between 11:00-11:50)
- There are 40 points total divided into 4 parts.
- You may not use books, notes or electronic devices of any kind.
- Write in complete English sentences. Proofs should be clear and concise.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.
- There is an extra blank page at the end of the exam.

| 1 a | $/ 10$ |
| :---: | :---: |
| 1 b | $/ 10$ |
| 2 | $/ 10$ |
| 3 | $/ 10$ |
| Total | $/ 40$ |

## 1 A pairing (20 points)

Let $U=\mathbb{R}^{3} / \mathbb{R}(1,1,1)$ and let $V=\left\{\underline{y} \in \mathbb{R}^{3} \mid \sum_{i=1}^{3} y_{i}=0\right\}$.
a. Show that $(\underline{x}+\mathbb{R}(1,1,1), \underline{y})=\sum_{i=1}^{3} x_{i} y_{i}$ defines a bilinear form on $U \times V$ ( 10 points)
b. Show that the form is non-degenerate (10 points)

## 2 Alternating forms (10 points)

Suppose that $\frac{1}{2} \in F$ and let $U$ be a vector space over $F$. Construct a natural bijection $\{$ alternating bilinear forms on $U\} \leftrightarrow\left(\bigwedge^{2} U\right)^{\prime}$.

## 3 Problem (10 points)

Let $V$ be a finite-dimensional vector space, and let $T \in \operatorname{End}_{F}(V)$ be diagonable. Show that the dual $\operatorname{map} T^{\prime}$ is also diagonable.
(this page intentionally left blank)

