Math 101 - WORKSHEET 33 TAYLOR SERIES AND DERIVATIVES

1. Manipulating power series: summing series

(1) Find $\sum_{n=1}^{\infty} \frac{1}{n2^n}$.

- (2) A vatars of geometric series. (a) Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^n}$.

(b) Express $\sum_{n=1}^{\infty} n^2 x^n$ as a rational function (ratio of polynomials).

(3) Find a simple formula for $\sum_{n=0}^{\infty} \frac{e^{nx}}{n!}$.

2. Taylor Series

The Taylor series of f(x) centered at c is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n.$$

(4) Find the MacLaurin (c=0) series of $f(x)=e^x$.

(5) (Final 2014) Find the Taylor series $g(x) = \log x$ centered at a = 2, as well as its radius of convergence.

(6) (Final 2014) Let $\sum_{n=0}^{\infty} A_n x^n$ be the MacLaurin series for e^{3x} . Find A_5 .

(7) (Final 2013) Let $f(x) = x^2 \sin(x^3)$. Find $f^{11}(0)$.