Math 101 - WORKSHEET 33 TAYLOR SERIES AND DERIVATIVES

1. Manipulating power series: Summing series

(1) Find $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$.
(2) Avatars of geometric series.
(a) Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.
(b) Express $\sum_{n=1}^{\infty} n^{2} x^{n}$ as a rational function (ratio of polynomials).
(3) Find a simple formula for $\sum_{n=0}^{\infty} \frac{e^{n x}}{n!}$.

2. Taylor SERies

The Taylor series of $f(x)$ centered at c is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

(4) Find the MacLaurin $(c=0)$ series of $f(x)=e^{x}$.
(5) (Final 2014) Find the Taylor series $g(x)=\log x$ centered at $a=2$, as well as its radius of convergence.
(6) (Final 2014) Let $\sum_{n=0}^{\infty} A_{n} x^{n}$ be the MacLaurin series for $e^{3 x}$. Find A_{5}.
(7) (Final 2013) Let $f(x)=x^{2} \sin \left(x^{3}\right)$. Find $f^{11}(0)$.

