Math 101 — SOLUTIONS TO WORKSHEET 33
TAYLOR SERIES AND DERIVATIVES

1. MANIPULATING POWER SERIES: SUMMING SERIES

(1) Find Y07 | = B
Solution: We know that log(1+z) =37, (711)1 2™, with radius of convergence 1. We then

have:
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(2) Avatars of geometric series.
(a) Evaluate > 2 2
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Solution: Let h(z) =Y 7, nz". We see that
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Now the radius of convergence of Y 7 " is 1, so 5 is in the domain of convergence and we
conclude
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(b) Express Y o-, n?z™ as a rational functwn (ratio of polynomials).
Solution: Let f(z) =7, 2" = 2—. We see that
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so that
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(3) Find a simple formula for 300 ;<.
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Solution: We know thate" =) "~
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2. TAYLOR SERIES

The Taylor series of f(x) centered at c is

> f(n)
I
n=0
(4) Find the MacLaurin (¢ = 0) series of f(x) = e”.
Solution: For each n we have f(™(z) = e* so f(™(0) = ¢ = 1. The series is therefore
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(5) (Final 2014) Find the Taylor series g(x) = log x centered at a = 2, as well as its radius of convergence.
Solution: ¢'(z) =2, ¢"(z) = —%, ¢®(2) = L2, gW(z) = —2%2, and in general ¢ (z) =
(-1t (”z D! So for n > 1 we have g(")( )= (—1)"*1% and the Taylor series is
—2)"
= log2+ Z x
For the radius of convergence we compute limy, o | 5n +112:b:11) / (7’ = lim,, oo HL_H . 23% =
% so we have R = 2.
Solution: We have
T 2

logz =log(2 + (x — 2))
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We know that log (1 +u) = >

logz =log2 +

The logarithm series converges for —1 < u < 1 so our series will converge for —1 <
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—u™ and it follows that
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< 1 that is

—2 < x — 2 < 2 so the radius of convergence is 2.

(Final 2014) Let Y77 ; A,2™ be the MacLaurin series for €3”. Find Aj.

Solution: Knowing that e = 3700 | 7 we have ¢ = 3°°° /3707 50 A5 =
(7) (Final 2013) Let f(x) = 2?sin(x?). Find f1(0).
Solution: We know that sinu = u — 3? + “g—? — - S0
9 11
2 sin(2?) = 2? <x3—9§!+-~-) :xS—%-i---
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It follows that

SO f(ll)(O) =1L
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