Math 101 - SOLUTIONS TO WORKSHEET 32 MANIPULATING POWER SERIES

1. Manipulating power series: Calculus

(1) Let $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, g(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} x^{n}$. We know that f converges everywhere, while g converges in $(-1,1]$.
(a) Find the power series representation of $f^{\prime}(x)$. What is $f(x)$?

Solution: $\quad f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}=\sum_{m=0}^{\infty} \frac{x^{m}}{m!}=f(x)$ so $f^{\prime}(x)=f(x)$ and $f(x)=C e^{x}$. Since $f(0)=1$, we have $C=1$ and $f(x)=e^{x}$.
(b) Find the power series representation of $g^{\prime}(x)$. What is $g^{\prime}(x)$? What is $g(x)$?

Solution: $\quad g^{\prime}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n x^{n-1}}{n}=\sum_{n=1}^{\infty}(-x)^{n-1}=\sum_{m=0}^{\infty}(-x)^{m}=\frac{1}{1-(-x)}=\frac{1}{1+x}$ so $g^{\prime}(x)=\frac{1}{1+x}$ and $g(x)=\log (1+x)+C$. Since $g(0)=0$, we have $C=0$ and $g(x)=\log x$.
(c) Conclude that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=\log 2$.

Solution: Since $x=1$ is in the domain of convergence of g, we have

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} 1^{n}=g(1)=\log (1+1)=\log 2
$$

(2) Consider the error function $\operatorname{erf}(x)=\int_{0}^{x} \exp \left(-t^{2}\right) \mathrm{d} t$.
(a) Find the power series expansion of $\operatorname{erf}(x)$ about zero.

Solution: We have $\exp \left(-t^{2}\right)=\sum_{n=0}^{\infty} \frac{\left(-t^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} t^{2 n}$. Integrating term-by-term we have

$$
\int_{0}^{x} f\left(-t^{2}\right) \mathrm{d} t=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}\left[\frac{t^{2 n+1}}{2 n+1}\right]_{t=0}^{t=x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)} t^{2 n+1}
$$

(b) How many terms in the expansion are necessary to estimate $\operatorname{erf}\left(\frac{1}{2}\right)$ to within 0.001 ?

Solution: We need to estimate $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1) 2^{n}}$ which is an alternating series. The term with $n=4$ already has the magnitude

$$
\frac{1}{24 \cdot 9 \cdot 16}<\frac{1}{20 \cdot 15 \cdot 8}=\frac{1}{2400}<\frac{1}{1000}
$$

so taking the first four terms $(0 \leq n \leq 3)$ suffices.

2. Manipulating power series: Summing series

(3) Find $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$.

Solution: We know that $\log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}$, with radius of convergence 1 . We then have:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n 2^{n}} & =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\left(\frac{-1}{2}\right)^{n}=-\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}\left(-\frac{1}{2}\right)^{n} \\
& ==-\log \left(1-\frac{1}{2}\right)=-\log \frac{1}{2}=\log 2
\end{aligned}
$$

(4) Avatars of geometric series.
(a) Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.

Solution: Let $h(x)=\sum_{n=1}^{\infty} n x^{n}$. We see that

$$
\begin{aligned}
h(x) & =x \sum_{n=1}^{\infty} n x^{n-1}=x \frac{\mathrm{~d}}{\mathrm{~d} x} \sum_{n=1}^{\infty} x^{n} \\
& =x \frac{\mathrm{~d}}{\mathrm{~d} x} \sum_{n=0}^{\infty} x^{n}=x \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{1}{1-x} \\
& =\frac{x}{(1-x)^{2}}
\end{aligned}
$$

Now the radius of convergence of $\sum_{n=0}^{\infty} x^{n}$ is 1 , so $\frac{1}{2}$ is in the domain of convergence and we conclude

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}=\frac{4}{2}=2
$$

(b) Express $\sum_{n=1}^{\infty} n^{2} x^{n}$ as a rational function (ratio of polynomials).

Solution: Let $f(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$. We see that

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=0}^{\infty} n x^{n-1} \\
x f^{\prime}(x) & =\sum_{n=0}^{\infty} n x^{n} \\
\left(x f^{\prime}(x)\right)^{\prime} & =\sum_{n=0}^{\infty} n^{2} x^{n-1} \\
x\left(x f^{\prime}(x)\right) & =\sum_{n=0}^{\infty} n^{2} x^{n}
\end{aligned}
$$

so that

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{2} x^{n} & =\sum_{n=0}^{\infty} n^{2} x^{n}=x\left(x\left(\frac{1}{1-x}\right)^{\prime}\right)^{\prime}=x\left(\frac{x}{(1-x)^{2}}\right)^{\prime} \\
& =x\left(\frac{1}{(1-x)^{2}}+\frac{2 x}{(1-x)^{3}}\right)=\frac{x((1-x)+2 x)}{(1-x)^{3}}=\frac{x(1+x)}{(1-x)^{3}}
\end{aligned}
$$

(5) Find a simple formula for $\sum_{n=0}^{\infty} \frac{e^{n x}}{n!}$.

Solution: We know that $e^{u}=\sum_{n=0}^{\infty} \frac{u^{n}}{n!}$ so setting $u=e^{x}$ we get $\sum_{n=0}^{\infty} \frac{1}{n!} e^{n x}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(e^{x}\right)^{n}=$ $e^{e^{x}}$.

