Math 101 - SOLUTIONS TO WORKSHEET 31 MANIPULATING POWER SERIES

1. Manipulating power series: Geometric Series

Recall that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$.
(1) Find a power series representation for
(a) (Final 2014) $\frac{x^{3}}{1-x}$

Solution: We know that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$. Multiplying by x^{3} we find

$$
\frac{x^{3}}{1-x}=x^{3} \sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty} x^{n+3}=\sum_{m=3}^{\infty} x^{m}
$$

(b) (Final 2011) $\frac{1}{1+x^{3}}$

Solution: We know that $\frac{1}{1-u}=\sum_{n=0}^{\infty} u^{n}$. Substituting $u=-x^{3}$ we therefore get

$$
\frac{1}{1+x^{3}}=\sum_{n=0}^{\infty}\left(-x^{3}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{3 n}
$$

(2) Find a power series representation for $\frac{1}{x+3}$
(a) Expanding about $a=0$

Solution: Striving toward $\frac{1}{1-u}$, we have:

$$
\begin{aligned}
\frac{1}{x+3} & =\frac{1}{3} \cdot \frac{1}{1+\left(\frac{x}{3}\right)}=\frac{1}{3} \cdot \frac{1}{1-\left(-\frac{x}{3}\right)} \\
& =\frac{1}{3} \sum_{n=0}^{\infty}\left(-\frac{x}{3}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}} x^{n}
\end{aligned}
$$

(b) Expanding about $a=7$

Solution: We need $x-7$ in our function, so we have:

$$
\begin{aligned}
\frac{1}{x+3} & =\frac{1}{x-7+10}=\frac{1}{10} \cdot \frac{1}{1-\left(-\frac{x-7}{10}\right)} \\
& =\frac{1}{10} \sum_{n=0}^{\infty}\left(-\frac{x-7}{10}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{10^{n+1}}(x-7)^{n}
\end{aligned}
$$

2. Manipulating power series: Calculus
(3) (Final 2011) Evaluate the following indefinite integral as a power series, and find its radius of convergence: $\int \frac{\mathrm{d} x}{1+x^{3}}$

Solution: In 1(b) we found that

$$
\frac{1}{1+x^{3}}=\sum_{n=0}^{\infty}(-1)^{n} x^{3 n}
$$

Integrating term-by-term we find

$$
\int \frac{\mathrm{d} x}{1+x^{3}}=C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3 n+1} x^{3 n+1}
$$

The expansion $\frac{1}{1-u}=\sum_{n=0}^{\infty} u^{n}$ has radius of convergence 1 (open interval $|u|<1$). So the open interval for the expansion of $\frac{1}{1+x^{3}}$ was where $\left|-x^{3}\right|<1$, that is where $|x|^{3}<1$, that is where $|x|<1$, so the radius of convergence was 1 . Since integration doesn't change the radius, the radius of convergence is still 1 .
(4) Let $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, g(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} x^{n}$. Last time we verified that f converges everywhere, while g converges for $-1<x \leq 1$.
(a) Find the power series representation of $f^{\prime}(x)$. What is $f(x)$?

Solution: $\quad f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}=\sum_{m=0}^{\infty} \frac{x^{m}}{m!}=f(x)$ so $f^{\prime}(x)=f(x)$ and $f(x)=C e^{x}$. Since $f(0)=1$, we have $C=1$ and $f(x)=e^{x}$.
(b) Find the power series representation of $g^{\prime}(x)$. What is $g^{\prime}(x)$? What is $g(x)$?

Solution: $\quad g^{\prime}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n x^{n-1}}{n}=\sum_{n=1}^{\infty}(-x)^{n-1}=\sum_{m=0}^{\infty}(-x)^{m}=\frac{1}{1-(-x)}=\frac{1}{1+x}$ so $g^{\prime}(x)=\frac{1}{1+x}$ and $g(x)=\log (1+x)+C$. Since $g(0)=0$, we have $C=0$ and $g(x)=\log x$.
(c) Conclude that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=\log 2$.

Solution: Since $x=1$ is in the domain of convergence of g, we have

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} 1^{n}=g(1)=\log (1+1)=\log 2
$$

(d) Find the power series representation of $\int_{0}^{x} \exp \left(-t^{2}\right) \mathrm{d} t$.

Solution: We have $\exp \left(-t^{2}\right)=\sum_{n=0}^{\infty} \frac{\left(-t^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} t^{2 n}$. Integrating term-by-term we have

$$
\int_{0}^{x} f\left(-t^{2}\right) \mathrm{d} t=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}\left[\frac{t^{2 n+1}}{2 n+1}\right]_{t=0}^{t=x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)} t^{2 n+1}
$$

3. MANIPULATING POWER SERIES: SUMMING SERIES

(5) Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.

Solution: Let $h(x)=\sum_{n=1}^{\infty} n x^{n}$. We see that

$$
\begin{aligned}
h(x) & =x \sum_{n=1}^{\infty} n x^{n-1}=x \frac{\mathrm{~d}}{\mathrm{~d} x} \sum_{n=1}^{\infty} x^{n} \\
& =x \frac{\mathrm{~d}}{\mathrm{~d} x} \sum_{n=0}^{\infty} x^{n}=x \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{1}{1-x} \\
& =\frac{x}{(1-x)^{2}} .
\end{aligned}
$$

Now the radius of convergence of $\sum_{n=0}^{\infty} x^{n}$ is 1 , so $\frac{1}{2}$ is in the domain of convergence and we conclude that

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}=\frac{4}{2}=2
$$

