Math 101 - WORKSHEET 30 POWER SERIES

(1) Which of the following is a power series:

$$
\square \sum_{n=0}^{\infty} \frac{n!(x-3)^{n}}{2^{2^{n}}} \quad \square \sum_{n=0}^{\infty} \frac{3}{n!}\left(e^{x}\right)^{n}
$$

1. The interval of convergence

(2) Find the interval of convergence and radius of convergence of the power series
(a) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(x-1)^{n}}{n}$
(b) $\sum_{n=0}^{\infty} n!x^{n}$
(c) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(d) (Final, 2014, variant) $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{3^{n}\left(n^{2}+1\right)}$
(e) (Final, 2011) $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{\log (n+2)}$
(3) Consider a power series $\sum_{n=0}^{\infty} A_{n}(x-5)^{n}$.
(a) The power series converges at $x=-3$. Show that it converges at $x=10$.
(b) The power series diverges at $x=15$. Show that it diverges at $x=-15$.
(c) Can you tell if the series converges at $x=14$? What can you say about the radius of convergence?

2. Manipulating power Series

(4) Let $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, g(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}$.
(a) Find the power series representation of $f^{\prime}(x)$. What is $f(x)$?
(b) Find the power series representation of $g^{\prime}(x)$. What is $g^{\prime}(x)$? What is $g(x)$?
(c) Find the power series representation of $\int_{0}^{x} f\left(-t^{2}\right) \mathrm{d} t$.

