Math 101 - SOLUTIONS TO WORKSHEET 30 POWER SERIES

(1) Which of the following is a power series:

$$
\square \sum_{n=0}^{\infty} \frac{n!(x-3)^{n}}{2^{2^{n}}} \quad \square \sum_{n=0}^{\infty} \frac{3}{n!}\left(e^{x}\right)^{n}
$$

Solution: The first is a power series, the second isn't (there are powers of e^{x}, not powers of $x!$).

1. The interval of convergence

(2) Find the interval of convergence and radius of convergence of the power series
(a) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(x-1)^{n}}{n}$

Solution: We have $c=1, A_{n}=\frac{(-1)^{n}}{n}$. Now

$$
\left|\frac{(-1)^{n}(x-1)^{n+1}}{n+1} / \frac{(-1)^{n-1}(x-1)^{n}}{n}\right|=|x-1|\left|\frac{n}{n+1}\right|=|x-1| \frac{1}{1+\frac{1}{n}} \xrightarrow[n \rightarrow \infty]{\longrightarrow}|x-1|
$$

so the series converges absolutely when $|x-1|<1$ and diverges when $|x-1|>1$. The series therefore converges at least on $(0,2)$. At the endpoint $x=2$ the series is $\sum_{n=1}^{\infty}(-1)^{n} \frac{1^{n}}{n}=$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ and it converges by the alternating series test. At $x=0$ we have the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(-1)^{n}}{n}=-\sum_{n=1}^{\infty} \frac{1}{n}$ which is a divergent p-series $(p=1)$. The interval of convergences is them $(0,2]$.
Solution: $\quad L=\lim _{n \rightarrow \infty}\left|\frac{A_{n+1}}{A_{n}}\right|=\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1$ so $R=\frac{1}{L}=1$, and the series converges at least on $(c-R, c+R)=(0,2)$. At the endpoint $x=2$ the series is $\sum_{n=1}^{\infty}(-1)^{n} \frac{1^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ and it converges by the alternating series test. At $x=0$ we have the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(-1)^{n}}{n}=-\sum_{n=1}^{\infty} \frac{1}{n}$ which is a divergent p-series $(p=1)$. The interval of convergences is them $(0,2]$.
(b) $\sum_{n=0}^{\infty} n!x^{n}$

Solution: If $x \neq 0$ we have $\left|\frac{(n+1)!x^{n+1}}{n!x^{n}}\right|=(n+1)|x| \xrightarrow[n \rightarrow \infty]{\longrightarrow}$ and the series diverges by the ratio test, so the series converges only for $x=0$.
Solution: We have $A_{n}=n$! and $L=\lim _{n \rightarrow \infty}\left|\frac{A_{n+1}}{A_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)!}{n!}=\lim _{n \rightarrow \infty}(n+1)=\infty$ so $R=\frac{1}{L}=0$ and the series only converges at $x=0$.
(c) $\sum_{n=0}^{\infty} \frac{x^{L}}{n!}$

Solution: We have $\left|\frac{x^{n+1}}{(n+1)!} / \frac{x^{n}}{n!}\right|=\frac{|x|}{n+1} \xrightarrow[n \rightarrow \infty]{ } 0$ so the series converges for all x. The interval is $(-\infty, \infty)$ and the radius is ∞.
Solution: We have $A_{n}=\frac{1}{n!}$ and $\lim _{n \rightarrow \infty}\left|\frac{A_{n+1}}{A_{n}}\right|=\lim _{n \rightarrow \infty} \frac{n!}{(n+1)!}=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0$ so $R=\infty$ and the interval of convergence is $(-\infty, \infty)$.
(d) (Final, 2014, variant) $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{3^{n}\left(n^{2}+1\right)}$

Solution: We have

$$
\begin{aligned}
&\left|\frac{(x-2)^{n+1}}{3^{n+1}\left((n+1)^{2}+1\right)} / \frac{(x-2)^{n}}{3^{n}\left(n^{2}+1\right)}\right|=\left|\frac{(x-2)^{n+1}}{(x-2)^{n}}\right| \cdot\left|\frac{3^{n}}{3^{n+1}}\right| \cdot \frac{n^{2}+1}{n^{2}+2 n+2} \\
&=|x-2| \cdot \frac{1}{3} \cdot \frac{1+\frac{1}{n^{2}}}{1+\frac{2}{n}+\frac{2}{n^{2}}} \\
& \xrightarrow[n \rightarrow \infty]{\longrightarrow} \frac{|x-2|}{3} .
\end{aligned}
$$

so the series converges for $\frac{|x-2|}{3}<1$ and diverges for $\frac{|x-2|}{3}>1$. We rewrite the first interval as $|x-2|<3$ so the radius of convergence is $R=3$. The endpoints of the interval of convergence are then $2 \pm 3=-1,5$. At $x=5$ we have the series $\sum_{n=0}^{\infty} \frac{1^{n}}{n^{2}+1}=\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}$ which convergeces by comparison to the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ (we have $\frac{1}{n^{2}+1}<\frac{1}{n^{2}}$ for all $n \geq 1$). At $x=-1$ we have the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$ which converges absolutely by the convergence at $x=5$. The interval of convergence is thus $[-1,5]$.
Solution: We have $L=\lim _{n \rightarrow \infty}\left(\frac{1}{3^{n+1}\left((n+1)^{2}+1\right)} / \frac{1}{3^{n}\left(n^{2}+1\right)}\right)=\lim _{n \rightarrow \infty} \frac{1}{3} \frac{n^{2}+1}{n^{2}+2 n+2}=\lim _{n \rightarrow \infty} \frac{1}{3} \frac{1+\frac{1}{n^{2}}}{1+\frac{2}{n}+\frac{2}{n^{2}}}=$ $\frac{1}{3}$ so the radius of convergence is $R=\frac{1}{1 / 3}=3$. The endpoints of the interval of convergence are then $2 \pm 3=-1,5$. At $x=5$ we have the series $\sum_{n=0}^{\infty} \frac{1^{n}}{n^{2}+1}=\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}$ which convergeces by comparison to the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ (we have $\frac{1}{n^{2}+1}<\frac{1}{n^{2}}$ for all $n \geq 1$). At $x=-1$ we have the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$ which converges absolutely by the convergence at $x=5$. The interval of convergence is thus $[-1,5]$.
(e) (Final, 2011) $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{\log (n+2)}$

Solution: We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{1}{\log (n+3)} / \frac{1}{\log (n+2)}\right) & =\lim _{n \rightarrow \infty} \frac{\log (n+2)}{\log (n+3)}=\lim _{x \rightarrow \infty} \frac{\log (x+2)}{\log (x+3)} \\
& =\lim _{x \rightarrow \infty} \frac{1}{x+2} / \frac{1}{x+3}=\lim _{x \rightarrow \infty} \frac{x+3}{x+2} \\
& =\lim _{x \rightarrow \infty} \frac{1+\frac{3}{x}}{1+\frac{2}{x}}=1
\end{aligned}
$$

so the radius of convergence is $R=\frac{1}{1}=1$. The endpoints of the interval of convergence are then $2 \pm 1=1,3$. At $x=3$ we have the series $\sum_{n=0}^{\infty} \frac{1^{n}}{\log (n+2)}=\sum_{n=0}^{\infty} \frac{1}{\log (n+2)}$ which diverges by comparison to the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ (we have $\log (n+2)<n$ for all large n, for example because $\lim _{x \rightarrow \infty} \frac{\log (x+2)}{x}=\lim _{x \rightarrow \infty} \frac{1}{x+2} \cdot \frac{1}{1}=0$, so $\frac{1}{\log (n+2)}>\frac{1}{n}$ eventually). At $x=1$ we have the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\log (n+2)}$ which converges by alternating series test (the signs change, and $\log (n+2)$ increases monotonically to infinity so $\frac{1}{\log (n+2)}$ decreases monotonically to zero).
(3) Consider a power series $\sum_{n=0}^{\infty} A_{n}(x-5)^{n}$.
(a) The power series converges at $x=-3$. Show that it converges at $x=10$.

Solution: Since $|-3-5|=8$, the radius of convergence is at least 8. Since $|10-5|=5<$ $8 \leq R$, the series converges at 10 . Note that the series may or may not converge at 13 (it may be that -5 and 13 are the two endpoints of the interval of convergence).
(b) The power series diverges at $x=15$. Show that it diverges at $x=-15$.

Solution: Since $|15-5|=10$, the radius of convergence is at most 10 . Since $|-15-5|=$ $20>10 \geq R$, the series diverges at -15 . Note that the series may or may not converge at 5 (it may be that 5 and 15 are the two endpoints of the interval of convergence).
(c) Can you tell if the series converges at $x=14$? What can you say about the radius of convergence?
Solution: We have learned that the radius of convergence satisfies $8 \leq R \leq 10$. Since $|14-5|=9$ it is impossible to tell whether 14 lies in the interval of convergence.

2. Manipulating power Series

(4) Let $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, g(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}$.
(a) Find the power series representation of $f^{\prime}(x)$. What is $f(x)$?

Solution: $\quad f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}=\sum_{m=0}^{\infty} \frac{x^{m}}{m!}=f(x)$ so $f^{\prime}(x)=f(x)$ and $f(x)=C e^{x}$. Since $f(0)=1$, we have $C=1$ and $f(x)=e^{x}$.
(b) Find the power series representation of $g^{\prime}(x)$. What is $g^{\prime}(x)$? What is $g(x)$?

Solution: $\quad g^{\prime}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n x^{n-1}}{n}=\sum_{n=1}^{\infty}(-x)^{n-1}=\sum_{m=0}^{\infty}(-x)^{m}=\frac{1}{1-(-x)}=\frac{1}{1+x}$ so $g^{\prime}(x)=\frac{1}{1+x}$ and $g(x)=\log (1+x)+C$. Since $g(0)=0$, we have $C=0$ and $g(x)=\log x$.
(c) Find the power series representation of $\int_{0}^{x} f\left(-t^{2}\right) \mathrm{d} t$.

Solution: We have $f\left(-t^{2}\right)=\sum_{n=0}^{\infty} \frac{\left(-t^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} t^{2 n}$. Integrating term-by-term we have

$$
\int_{0}^{x} f\left(-t^{2}\right) \mathrm{d} t=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}\left[\frac{t^{2 n+1}}{2 n+1}\right]_{t=0}^{t=x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)} x^{2 n+1}
$$

