Math 101 - SOLUTIONS TO WORKSHEET 29 THE RATIO TEST

(1) If the series converges, find its sum. Otherwise, state that it diverges.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n+3}}{11^{n}}$

Solution: We rewrite the series as

$$
\sum_{n=0}^{\infty} 3^{3}\left(-\frac{3^{2}}{11}\right)^{n}=27 \sum_{n=0}^{\infty}\left(-\frac{9}{11}\right)^{n}
$$

we now see that we have a convergent geometric series, which sums to

$$
=27 \frac{1}{1-\left(-\frac{9}{11}\right)}=\frac{27 \cdot 11}{20} .
$$

(b) $\sum_{n=1}^{\infty}(-1)^{n+2} \frac{3^{3 n+2}}{11^{n}}$

Solution: We rewrite the series as

$$
\sum_{n=1}^{\infty} 3^{2}\left(-\frac{3^{3}}{11}\right)^{n}=9 \sum_{n=1}^{\infty}\left(-\frac{27}{11}\right)^{n}
$$

This is a divergent geometric series (its ratio $-\frac{27}{11}$ has magnitude greater than 1).
(2) Decide whether the following series converge:
(a) $\sum_{n=0}^{\infty} \frac{n}{2^{n}}$

Solution: We have $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n+1}{2^{n+1}} / \frac{n}{2^{n}}=\frac{n+1}{n} \cdot \frac{2^{n}}{2^{n+1}}=\frac{1}{2}\left(1+\frac{1}{n}\right) \xrightarrow[n \rightarrow \infty]{ } \frac{1}{2}<1$ so the series converges by the ratio test.
(b) $\sum_{n=0}^{\infty} \frac{n!}{2^{n}}$

Solution: We have $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)!}{2^{n+1}} / \frac{n!}{2^{n}}=\frac{(n+1)!}{n!} \cdot \frac{2^{n}}{2^{n+1}}=\frac{n+1}{2} \xrightarrow[n \rightarrow \infty]{ } \infty>1$ so the series diverges by the ratio test.
(c) $\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$

Solution: We have $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2}{n+1} \xrightarrow[n \rightarrow \infty]{ } 0<1$ so the series converges by the ratio test.
(d) For which values of x does $\sum_{n=0}^{\infty} n x^{n}$ converge?

Solution: Let $a_{n}=n x^{n}$. Then

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)|x|^{n+1}}{n|x|^{n}}=\left(1+\frac{1}{n}\right)|x| \xrightarrow[n \rightarrow \infty]{ }|x| .
$$

By the ratio test, the series converges if $|x|<1$ and diverges if $|x|>1$. If $|x|=1$ then $\left|a_{n}\right|=n|x|^{n}=n \xrightarrow[n \rightarrow \infty]{ } \infty$ so the series diverges by the divergence test. We conclude that the series converges exactly when $|x|<1$, that is for $x \in(-1,1)$.

