Math 101 - WORKSHEET 28 ABSOLUTE CONVERGENCE

1. More Tail Estimates

(1) It is known that $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\log 2$. How many terms are needed for the error to be less than 0.01 ?
(2) It is known that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots=\frac{\pi}{4}$. How many terms are needed for the error to be less than 0.001 ?

2. Convergence

(3) Which of the following converges:

$$
\square\left\{\frac{1}{\sqrt{n}}\right\}_{n=1}^{\infty} \square \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \square\left\{\frac{(-1)^{n}}{\sqrt{n}}\right\}_{n=1}^{\infty} \square \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
$$

(4) Place checkmarks

	Converges		Diverges
	Absolutely	Conditionally	
$\sum_{n=1}^{\infty}(-1)^{n}$			
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$			
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$			
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$			
$\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$			
$\sum_{n=1}^{\infty} \frac{\sin n}{n}$			

3. Ratio test

(5) Decide whether the following series converge:
(a) $\sum_{n=0}^{\infty} \frac{n}{2^{n}}$
(b) $\sum_{n=0}^{\infty} \frac{n!}{2^{n}}$
(c) $\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$
(d) For which values of x does $\sum_{n=0}^{\infty} n x^{n}$ converge?

