Math 101 - WORKSHEET 28 ABSOLUTE CONVERGENCE

1. More Tail Estimates

- (1) It is known that $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \frac{1}{6} + \dots = \log 2$. How many terms are needed for the error to be less than 0.01?
- (2) It is known that $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \frac{1}{11} + \dots = \frac{\pi}{4}$. How many terms are needed for the error to be less than 0.001?

2. Convergence

(3) Which of the following converges:

$$\Box \left\{ \frac{1}{\sqrt{n}} \right\}_{n=1}^{\infty} \quad \Box \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \quad \Box \left\{ \frac{(-1)^n}{\sqrt{n}} \right\}_{n=1}^{\infty} \quad \Box \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

(4) Place checkmarks

	Converges		Diverges
	Absolutely	Conditionally	
$\sum_{n=1}^{\infty} (-1)^n$			
$\sum_{n=1}^{\infty} \frac{1}{n^2}$			
$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$			
$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$			
$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$			
$\sum_{n=1}^{\infty} \frac{\sin n}{n}$			

Date: 17/3/2017, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

3. Ratio test

(5) Decide whether the following series converge: (a) $\sum_{n=0}^{\infty} \frac{n}{2^n}$

(b) $\sum_{n=0}^{\infty} \frac{n!}{2^n}$

(c) $\sum_{n=0}^{\infty} \frac{2^n}{n!}$

(d) For which values of x does $\sum_{n=0}^{\infty} nx^n$ converge?