Math 101 - SOLUTIONS TO WORKSHEET 28 ABSOLUTE CONVERGENCE

1. More Tail Estimates

(1) It is known that e^x = ∑_{n=0}[∞] xⁿ/n!.
(a) How close is 1/2 - 1/6 + 1/24 to 1/e?
(b) How many terms are needed to approximate 1/e to within 1/1000?
Solution: The series e⁻¹ = ∑_{n=0}[∞] (-1)ⁿ/n! is alternating, and n! is increasing to infinity so that 1/n! monotonically decrease to zero. By the alternating series test, the error is bounded by the next term term.

(a) The next term after $\frac{1}{24} = \frac{1}{4!}$ is $-\frac{1}{5!} = \frac{1}{120}$ so

$$\left|\frac{1}{e} - \left(1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24}\right)\right| \le \frac{1}{120}$$

(b) If we want to approximate $\frac{1}{e}$ to within $\frac{1}{1000}$ we need to keep terms until one is smaller than than. We have $\frac{1}{6!} = \frac{1}{720}$ and $-\frac{1}{7!} = -\frac{1}{5040}$ so keeping the first seven terms we have

$$\left|\frac{1}{e} - \left(\frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720}\right)\right| \le \frac{1}{5040} < \frac{1}{1000}$$

(2) The error function is (roughly) given by $\operatorname{erf}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)} x^{2n+1}$. How many terms are needed to approximate $\operatorname{erf}(\frac{1}{10})$ to within 10^{-11} ?

Solution: Using $x = \frac{1}{10}$ gives the series

$$\operatorname{erf}\left(\frac{1}{10}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)10^{2n+1}}.$$

Since each of the factors of $n!(2n+1)10^{2n+1}$ is increasing, the terms of the series terms are monotonically decreasing in magnitude, tending to zero, and are clearly alternating in sign. For n = 4 we have $n!(2n+1)10^{2n+1} = 24 \cdot 9 \cdot 10^9 > 100 \cdot 10^9 = 10^{11}$ since $24 \cdot 9 > 20 \cdot 5 = 100$. By the alternating series test taking the first four terms is sufficient:

$$\left| \operatorname{erf} \left(\frac{1}{10} \right) - \left(1 - \frac{1}{300} + \frac{1}{10^4} - \frac{1}{42 \cdot 10^7} \right) \right| < 10^{-11} \,.$$

2. Absolute Convergence

(3) Decide if each sequence/series converges:

$$\Box \left\{ \frac{1}{\sqrt{n}} \right\}_{n=1}^{\infty} \quad \Box \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \quad \Box \left\{ \frac{(-1)^n}{\sqrt{n}} \right\}_{n=1}^{\infty} \quad \Box \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

Solution: $\lim_{n\to 1} \frac{1}{\sqrt{n}} = 0$, so also $\lim_{n\to\infty} \frac{-1}{\sqrt{n}} = 0$, and by the squeeze theorem $\lim_{n\to\infty} \frac{(-1)^n}{\sqrt{n}} = 0$, so both sequences *converge*. The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a *p*-series with $p = \frac{1}{2} < 1$ so it *diverges* while the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges by the alternating series test.

Date: 17/3/2017, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(4) Place checkmarks

	Converges		Diverges
	Absolutely	Conditionally	
$\sum_{n=1}^{\infty} (-1)^n$			Х
$\sum_{n=1}^{\infty} \frac{1}{n^2}$	Х		
$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$	Х		
$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$		Х	
$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$	Х		
$\frac{(*)\sum_{n=1}^{\infty}\frac{\sin n}{n}}{2}$		X	C

Solution: * The series $\sum_{n=1}^{\infty} (-1)^n$ diverges, for example by the *n*th element test – the terms are either +1,-1 and in any case don't tend to zero.

* The positive series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges (*p*-series with p = 2 > 1). The series is also absolutely convergent because each term is equal to its own absolute value.

* In the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$, replacing each term by its absolute value gives the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ which is convergent (see above) so this series is also absolutely convergent. * Replacing each term in of the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ by its absolute value gives the series $\sum_{n=1}^{\infty} \frac{1}{n}$ which diverges (it's the harmonic series), so $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is not absolutely convergent. But the series $\sum_{n=1}^{\infty} \frac{1}{n}$ which diverges (it's the harmonic series), so $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is not absolutely convergent. But the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ does converge by the alternating series test: its terms alternate in sign, decrease in

magnitude, and tend to zero. It follows that the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges conditionally. * Replacing each term in of the series $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ by its absolute value gives the positive series $\sum_{n=1}^{\infty} \frac{|\sin n|}{n^2}$ which coverges by comparison with the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (we have $0 \le \frac{|\sin n|}{n^2} \le \frac{1}{n^2}$ for all n).

* The example $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ is just for flavour – properly dealing with it is beyond the level of Math 101. The basic idea is that as n varies, the angle "n radians" looks like a random angle around the circle. this makes the numbers $\sin n$ be distributed in [-1, 1] according to the sign curve. First, replacing each term with its absolute value gives the series $\sum_{n=1}^{\infty} \frac{|\sin n|}{n}$ and since the values $\sin n$ are random, they aren't often close to zero, and you can roughly compare our series to $\sum_{n=1}^{\infty} \frac{1/10}{n}$ which diverges. On the other hand, without absolute values there is a lot of cancellation between the terms (to see the cancellation note that $\int_0^{2\pi} \sin \theta \, d\theta = 0$ and that $\left| \int_0^T \sin \theta \, d\theta \right| \le 2$ no matter how big T is) and this makes the series $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ converge.

(*) beyond the scope of Math 101

3. Ratio test

- (5) Decide whether the following series converge:
 - (a) $\sum_{n=0}^{\infty} \frac{n}{2^n}$

Solution: We have $\left|\frac{a_{n+1}}{a_n}\right| = \frac{n+1}{2^{n+1}} / \frac{n}{2^n} = \frac{n+1}{n} \cdot \frac{2^n}{2^{n+1}} = \frac{1}{2} \left(1 + \frac{1}{n}\right) \xrightarrow[n \to \infty]{} \frac{1}{2} < 1$ so the series converges by the ratio test.

- (b) $\sum_{n=0}^{\infty} \frac{n!}{2^n}$ We have $\left|\frac{a_{n+1}}{a_n}\right| = \frac{(n+1)!}{2^{n+1}} / \frac{n!}{2^n} = \frac{(n+1)!}{n!} \cdot \frac{2^n}{2^{n+1}} = \frac{n+1}{2} \xrightarrow[n \to \infty]{} \infty > 1$ so the series Solution: diverges by the ratio test.
- (c) $\sum_{n=0}^{\infty} \frac{2^n}{n!}$

Solution: We have $\left|\frac{a_{n+1}}{a_n}\right| = \frac{2}{n+1} \xrightarrow[n \to \infty]{} 0 < 1$ so the series converges by the ratio test. (d) For which values of x does $\sum_{n=0}^{\infty} nx^n$ converge?

Solution: Let $a_n = nx^n$. Then

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{(n+1)|x|^{n+1}}{n|x|^n} = \left(1+\frac{1}{n}\right)|x| \xrightarrow[n \to \infty]{} |x| .$$

By the ratio test, the series converges if |x| < 1 and diverges if |x| > 1. If |x| = 1 then $|a_n| = n |x|^n = n \xrightarrow[n \to \infty]{} \infty$ so the series diverges by the divergence test. We conclude that the series converges exactly when |x| < 1, that is for $x \in (-1, 1)$.