Math 101 - SOLUTIONS TO WORKSHEET 28 ABSOLUTE CONVERGENCE

1. More Tail Estimates

(1) It is known that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.
(a) How close is $\frac{1}{2}-\frac{1}{6}+\frac{1}{24}$ to $\frac{1}{e}$?
(b) How many terms are needed to approximate $\frac{1}{e}$ to within $\frac{1}{1000}$?

Solution: The series $e^{-1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$ is alternating, and $n!$ is increasing to infinity so that $\frac{1}{n!}$ monotonically decrease to zero. By the alternating series test, the error is bounded by the next term.
(a) The next term after $\frac{1}{24}=\frac{1}{4!}$ is $-\frac{1}{5!}=\frac{1}{120}$ so

$$
\left|\frac{1}{e}-\left(1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}\right)\right| \leq \frac{1}{120}
$$

(b) If we want to approximate $\frac{1}{e}$ to within $\frac{1}{1000}$ we need to keep terms until one is smaller than than. We have $\frac{1}{6!}=\frac{1}{720}$ and $-\frac{1}{7!}=-\frac{1}{5040}$ so keeping the first seven terms we have

$$
\left|\frac{1}{e}-\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\frac{1}{120}+\frac{1}{720}\right)\right| \leq \frac{1}{5040}<\frac{1}{1000}
$$

(2) The error function is (roughly) given by $\operatorname{erf}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)} x^{2 n+1}$. How many terms are needed to approximate $\operatorname{erf}\left(\frac{1}{10}\right)$ to within 10^{-11} ?

Solution: Using $x=\frac{1}{10}$ gives the series

$$
\operatorname{erf}\left(\frac{1}{10}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1) 10^{2 n+1}}
$$

Since each of the factors of $n!(2 n+1) 10^{2 n+1}$ is increasing, the terms of the series terms are monotonically decreasing in magnitude, tending to zero, and are clearly alternating in sign. For $n=4$ we have $n!(2 n+1) 10^{2 n+1}=24 \cdot 9 \cdot 10^{9}>100 \cdot 10^{9}=10^{11}$ since $24 \cdot 9>20 \cdot 5=100$. By the alternating series test taking the first four terms is sufficient:

$$
\left|\operatorname{erf}\left(\frac{1}{10}\right)-\left(1-\frac{1}{300}+\frac{1}{10^{4}}-\frac{1}{42 \cdot 10^{7}}\right)\right|<10^{-11}
$$

2. Absolute Convergence

(3) Decide if each sequence/series converges:

$$
\square\left\{\frac{1}{\sqrt{n}}\right\}_{n=1}^{\infty} \square \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \square\left\{\frac{(-1)^{n}}{\sqrt{n}}\right\}_{n=1}^{\infty} \quad \square \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
$$

Solution: $\lim _{n \rightarrow 1} \frac{1}{\sqrt{n}}=0$, so also $\lim _{n \rightarrow \infty} \frac{-1}{\sqrt{n}}=0$, and by the squeeze theorem $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{\sqrt{n}}=$ 0 , so both sequences converge. The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a p-series with $p=\frac{1}{2}<1$ so it diverges while the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges by the alternating series test.
(4)

Place checkmarks

	Converges		Diverges
	Absolutely	Conditionally	
$\sum_{n=1}^{\infty}(-1)^{n}$			X
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$	X		
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$	X		
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$		X	
$\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$	X		
$\left(^{*}\right) \sum_{n=1}^{\infty} \frac{\sin n}{n}$		X	

Solution: ${ }^{*}$ The series $\sum_{n=1}^{\infty}(-1)^{n}$ diverges, for example by the nth element test - the terms are either $+1,-1$ and in any case don't tend to zero.

* The positive series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges (p-series with $p=2>1$). The series is also absolutely convergent because each term is equal to its own absolute value.
* In the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$, replacing each term by its absolute value gives the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ which is convergent (see above) so this series is also absolutely convergent.
* Replacing each term in of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ by its absolute value gives the series $\sum_{n=1}^{\infty} \frac{1}{n}$ which diverges (it's the harmonic series), so $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ is not absolutely convergent. But the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ does converge by the alternating series test: its terms alternate in sign, decrease in magnitude, and tend to zero. It follows that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges conditionally.
* Replacing each term in of the series $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$ by its absolute value gives the positive series $\sum_{n=1}^{\infty} \frac{|\sin n|}{n^{2}}$ which coverges by comparison with the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ (we have $0 \leq \frac{|\sin n|}{n^{2}} \leq \frac{1}{n^{2}}$ for all n).
* The example $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ is just for flavour - properly dealing with it is beyond the level of Math 101. The basic idea is that as n varies, the angle " n radians" looks like a random angle around the circle. this makes the numbers $\sin n$ be distributed in $[-1,1]$ according to the sign curve. First, replacing each term with its absolute value gives the series $\sum_{n=1}^{\infty} \frac{|\sin n|}{n}$ and since the values $\sin n$ are random, they aren't often close to zero, and you can roughly compare our series to $\sum_{n=1}^{\infty} \frac{1 / 10}{n}$ which diverges. On the other hand, without absolute values there is a lot of cancellation between the terms (to see the cancellation note that $\int_{0}^{2 \pi} \sin \theta \mathrm{~d} \theta=0$ and that $\left|\int_{0}^{T} \sin \theta \mathrm{~d} \theta\right| \leq 2$ no matter how $\operatorname{big} T$ is) and this makes the series $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ converge.
(*) beyond the scope of Math 101

3. Ratio test

(5) Decide whether the following series converge:
(a) $\sum_{n=0}^{\infty} \frac{n}{2^{n}}$

Solution: We have $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n+1}{2^{n+1}} / \frac{n}{2^{n}}=\frac{n+1}{n} \cdot \frac{2^{n}}{2^{n+1}}=\frac{1}{2}\left(1+\frac{1}{n}\right) \xrightarrow[n \rightarrow \infty]{ } \frac{1}{2}<1$ so the series converges by the ratio test.
(b) $\sum_{n=0}^{\infty} \frac{n!}{2^{n}}$

Solution: We have $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)!}{2^{n+1}} / \frac{n!}{2^{n}}=\frac{(n+1)!}{n!} \cdot \frac{2^{n}}{2^{n+1}}=\frac{n+1}{2} \xrightarrow[n \rightarrow \infty]{ } \infty>1$ so the series diverges by the ratio test.
(c) $\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$

Solution: We have $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2}{n+1} \xrightarrow[n \rightarrow \infty]{ } 0<1$ so the series converges by the ratio test.
(d) For which values of x does $\sum_{n=0}^{\infty} n x^{n}$ converge?

Solution: Let $a_{n}=n x^{n}$. Then

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)|x|^{n+1}}{n|x|^{n}}=\left(1+\frac{1}{n}\right)|x| \xrightarrow[n \rightarrow \infty]{ }|x|
$$

By the ratio test, the series converges if $|x|<1$ and diverges if $|x|>1$. If $|x|=1$ then $\left|a_{n}\right|=n|x|^{n}=n \xrightarrow[n \rightarrow \infty]{ } \infty$ so the series diverges by the divergence test. We conclude that the series converges exactly when $|x|<1$, that is for $x \in(-1,1)$.

