Math 101 – SOLUTIONS TO WORKSHEET 27 ALTERNATING SERIES

1. Converge or Diverge?

- (1) Determine, with explanation, whether the following series converge or diverge.

 - (a) (Alternating harmonic series) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$. Solution: The terms are alternating in sign, decreasing in magnitude, and tending to zero, so by the alternating series test the series converges.

(b) $1 - \frac{1}{4} + \frac{1}{3} - \frac{1}{16} + \frac{1}{5} - \frac{1}{36} + \frac{1}{7} - \frac{1}{64} + \frac{1}{9} - \frac{1}{100} + \frac{1}{11} - \frac{1}{144} + \cdots$ **Solution:** The positive terms are $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$ and $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ is a divergent series since $\frac{1}{2n-1} \ge \frac{1}{2n} > 0$ and $\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ is the divergent harmonic series). The negative terms are $-\frac{1}{4} - \frac{1}{16} - \cdots = -\sum_{n=1}^{\infty} \frac{1}{(2n)^2} = -\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2}$ and this is a convergent *p*-series (p=2>1). Since the sum of a convergent series and a divergent series diverges, the series as a whole diverges.

NOTE: the series is alternating and the terms tend to zero but they are not decreasing in magnitude.

(c) (Final 2014) $\sum_{n=1}^{\infty} \frac{n \cos(\pi n)}{2^n}$ **Solution:** Since $\cos(\pi n) = (-1)^n$ the series is alternating. Let $f(x) = \frac{x}{2^x}$. Then f'(x) > 0 for x > 0, $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{(\log 2)2^x} = 0$ by l'Hôpital and

$$f'(x) = \frac{2^x - x \log 2 \cdot 2^x}{(2^x)^2} = -\frac{(\log 2)x - 1}{2^x} < 0$$

- for $x > \frac{1}{\log 2}$. It follows that f'(x) is positive, eventually decreasing, and tends to zero. By the alternating series test, $\sum_{n=1}^{\infty} (-1)f(n)$ converges. (d) (Final 2011) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p} = 1 \frac{1}{2^p} + \frac{1}{3^p} \frac{1}{4^p} + \cdots$ (your answer will depend on p) **Solution:** For p > 0, the numbers $\frac{1}{n^p}$ are decreasing as n increases and tend to zero, so the series converges by the alternating series test. For $p \leq 0$, the terms n^{-p} are all at least one, so the series diverges by the divergence test (the terms fail to converge to zero).
- (2) Power series
 - (a) (Final 2013, variant) Decide whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} (x+2)^n$ converges or diverges at x = -1 and at x = -3.

x = -1 and at x = -3. **Solution:** At x = -1 we have the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$. The terms are alternating in sign, decreasing in magnitude, and tending to zero, so by the alternating series test the series converges at x = -1. At x = -3 we have the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} (-1)^n = \sum_{n=1}^{\infty} \frac{(-1)^{2n}}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which

is a divergent *p*-series $(p = \frac{1}{2} \le 1)$. (b) Decide whether the series $\sum_{n=1}^{\infty} nx^n$ converges or diverges at x = 1 and x = -1. **Solution:** At both values the series diverges, since the terms tend to infinity in magnitude.

2. Error estimates

(3) (a) It is known that $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots = \log 2$. How many terms are needed for the error to be less than 0.01?

Date: 15/3/2017, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

Solution: The series is alternating, so the error in approximating its sum by a partial sum is less than the first ommitted term. Taking the first 99 terms, this means that

$$\left|\log 2 - \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{99}\right)\right| \le \frac{1}{100}$$

as desired.

(b) It is known that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots = \frac{\pi}{4}$. How many terms are needed for the error to be less than 0.001?

Solution: Again the series is alternating. The magnitude of the *n*th term is $\frac{1}{2n-1}$ so taking the first 500 terms we get that

$$\left|\frac{\pi}{4} - \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots - \frac{1}{999}\right)\right| \le \frac{1}{1001} < \frac{1}{1000}.$$

- (4) (MacLaurin expansions)
 - (a) It is known that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. How close is $\frac{1}{2} \frac{1}{6} + \frac{1}{24}$ to $\frac{1}{e}$? How many terms are needed to approximate $\frac{1}{e}$ to within $\frac{1}{1000}$?

Solution: The series $e^{-1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ is alternating, and n! is increasing to infinity so that $\frac{1}{n!}$ monotonically decrease to zero. By the alternating series test, the error is bounded by the next term.

(a) The next term after
$$\frac{1}{24} = \frac{1}{4!}$$
 is $-\frac{1}{5!} = \frac{1}{120}$ so
 $\left|\frac{1}{e} - \left(1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24}\right)\right| \le \frac{1}{120}$

(b) If we want to approximate $\frac{1}{e}$ to within $\frac{1}{1000}$ we need to keep terms until one is smaller than than. We have $\frac{1}{6!} = \frac{1}{720}$ and $-\frac{1}{7!} = -\frac{1}{5040}$ so keeping the first seven terms we have

$$\frac{1}{e} - \left(\frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720}\right) \bigg| \le \frac{1}{5040} < \frac{1}{1000} \,.$$

(b) The error function is (roughly) given by $\operatorname{erf}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)} x^{2n+1}$. How many terms are needed to approximate $\operatorname{erf}(\frac{1}{10})$ to within 10^{-11} ?

Solution: Using $x = \frac{1}{10}$ gives the series

$$\operatorname{erf}\left(\frac{1}{10}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)10^{2n+1}}$$

Since each of the factors of $n!(2n+1)10^{2n+1}$ is increasing, the terms of the series terms are monotonically decreasing in magnitude, tending to zero, and are clearly alternating in sign. For n = 4 we have $n!(2n+1)10^{2n+1} = 24 \cdot 9 \cdot 10^9 > 100 \cdot 10^9 = 10^{11}$ since $24 \cdot 9 > 20 \cdot 5 = 100$. By the alternating series test taking the first four terms is sufficient:

$$\left| \operatorname{erf} \left(\frac{1}{10} \right) - \left(1 - \frac{1}{300} + \frac{1}{10^4} - \frac{1}{42 \cdot 10^7} \right) \right| < 10^{-11} \,.$$