Math 101 - SOLUTIONS TO WORKSHEET 26 THE COMPARISON TEST

1. Comparison by Massaging

(1) Determine, with explanation, whether the following series converge or diverge.
(a) (Final 2014) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$

Solution: For $n \geq 1$ we have $n^{2}+1 \leq n^{2}+n^{2}=2 n^{2}$ so that $\frac{1}{\sqrt{n^{2}+1}} \geq \frac{1}{\sqrt{2 n^{2}}}=\frac{1}{\sqrt{2}} \frac{1}{n}$. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (p-test with $p=1 \leq 1$) so by the comparison test the given series diverges as well.
Solution: (Really complicated) The function $f(x)=\frac{1}{\sqrt{x^{2}+1}}$ is positive and decreasing on $[0, \infty)$. Using the susbtitutions $x=\tan \theta$ and $\sin \theta=u$ we have:

$$
\begin{aligned}
\int \frac{\mathrm{d} x}{\sqrt{1+x^{2}}} & =\int \frac{\sec ^{2} \theta \mathrm{~d} \theta}{\sqrt{1+\tan ^{2} \theta}} \\
& =\int \frac{\sec ^{2} \theta \mathrm{~d} \theta}{\sec \theta} \\
& =\int \frac{\cos \theta \mathrm{d} \theta}{\cos ^{2} \theta} \\
& =\int \frac{\mathrm{d} u}{1-u^{2}}=\frac{1}{2} \int\left[\frac{1}{1+u}+\frac{1}{1-u}\right] \mathrm{d} u \\
& =\frac{1}{2} \log |1+u|-\frac{1}{2} \log |1-u|+C \\
& =\frac{1}{2} \log \left|\frac{1+u}{1-u}\right|+C \\
& =\frac{1}{2} \log \frac{1+\sin \theta}{1-\sin \theta}+C
\end{aligned}
$$

(we don't need absolute values since $1+\sin \theta$ and $1-\sin \theta$ are both non-negative). Now $\sin \theta=\frac{x}{\sqrt{1+x^{2}}}$ so

$$
\begin{aligned}
\int \frac{\mathrm{d} x}{\sqrt{1+x^{2}}} & =\frac{1}{2} \log \frac{1+\frac{x}{\sqrt{1+x^{2}}}}{1-\frac{x}{\sqrt{1+x^{2}}}}+C \\
& =\frac{1}{2} \log \frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}-x}+C
\end{aligned}
$$

Now

$$
\begin{aligned}
\frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}-x} & =\frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}-x} \cdot \frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}+x} \\
& =\frac{\left(\sqrt{1+x^{2}}+x\right)^{2}}{1+x^{2}-x^{2}}=\left(\sqrt{1+x^{2}}+x\right)^{2}
\end{aligned}
$$

so finally

$$
\begin{aligned}
\int \frac{\mathrm{d} x}{\sqrt{1+x^{2}}} & =\frac{1}{2} \log \left(\sqrt{1+x^{2}}+x\right)^{2}+C \\
& =\log \left(\sqrt{1+x^{2}}+x\right)+C
\end{aligned}
$$

We therefore have

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\mathrm{d} x}{\sqrt{1+x^{2}}} & =\lim _{T \rightarrow \infty} \int_{0}^{T} \frac{\mathrm{~d} x}{\sqrt{1+x^{2}}} \\
& =\lim _{T \rightarrow \infty}\left[\log \left(\sqrt{1+T^{2}}+T\right)-\log \left(\sqrt{1+0^{2}}+0\right)\right] \\
& =\lim _{T \rightarrow \infty} \log \left(\sqrt{1+T^{2}}+T\right)=\infty
\end{aligned}
$$

By the integral test the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{1+n^{2}}}$ diverges as well.
(b) (Final 2013, variant) $1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\frac{1}{81}+\frac{1}{121}+\cdots$

Solution: The series is $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots$ and has positive terms. The nth odd number is $2 n-1$ so the series is

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

For $n \geq 1,2 n-1 \geq 2 n-n=n$ so $\frac{1}{(2 n-1)^{2}} \leq \frac{1}{n^{2}}$. The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by the p-test ($p=2>1$) so by the comparison test our series converges too.
(c) (Final 2013) $\sum_{n=1}^{\infty} \frac{n+\sin n}{1+n^{2}}$

Solution: For $n \geq 2$ we have $n+\sin n \geq n-1 \geq n-\frac{n}{2}$ and $1+n^{2} \leq 2 n^{2}$ so that for $n \geq 2$ we have $\frac{n+\sin n}{n^{2}+1} \geq \frac{n / 2}{2 n^{2}}=\frac{1}{4 n}$. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (p-test with $p=1$) so by the comparison test the given series diverges as well.
(d) $1+\frac{1}{2^{3}}+\frac{1}{3^{2}}+\frac{1}{4^{3}}+\frac{1}{5^{2}}+\frac{1}{6^{3}}+\frac{1}{7^{2}}+\cdots$

Solution: Let a_{n} be the nth term of the series (which is positive) so that $a_{n}=\left\{\begin{array}{ll}\frac{1}{n^{2}} & n \text { odd } \\ \frac{1}{n^{3}} & n \text { even }\end{array}\right.$.
For $n \geq 1$ we have $\frac{1}{n^{3}} \leq \frac{1}{n^{2}}$ so $a_{n} \leq \frac{1}{n^{2}}$ in any case. Now $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by the p-test ($p=2>1$) so by the comparison test the series $\sum_{n=1}^{\infty} a_{n}$ converges as well.

2. Limit comparison test

(2) Determine, with explanation, whether the following series converge or diverge.
(a) (Final 2014) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$

Solution: We have $\lim _{n \rightarrow \infty} \frac{1}{n} / \frac{1}{\sqrt{n^{2}+1}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+1}}{n}=\lim _{n \rightarrow \infty} \sqrt{1+\frac{1}{n^{2}}}=1$. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (p-test with $p=1$) so by the limit comparison test our series dinverges as well.
(b) (Final 2013, variant) $1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\frac{1}{81}+\frac{1}{121}+\cdots$

Solution: The series is $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots$ and has positive terms. The nth odd number is $2 n-1$ so the series is

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

Now $\lim _{n \rightarrow \infty} \frac{1}{n^{2}} / \frac{1}{(2 n-1)^{2}}=\lim _{n \rightarrow \infty}\left(\frac{2 n-1}{n}\right)^{2}=\lim _{n \rightarrow \infty}\left(2-\frac{1}{n}\right)^{2}=4$. The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by the p-test $(p=2>1)$ so by the limit comparison test our series converges too.
(c) (Final 2013) $\sum_{n=1}^{\infty} \frac{n+\sin n}{1+n^{2}}$

Solution: We have

$$
\lim _{n \rightarrow \infty} \frac{n+\sin n}{n^{2}+1} / \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{1+\frac{\sin n}{n^{2}}}{1+\frac{1}{n^{2}}}=\frac{1+\lim _{n \rightarrow \infty} \frac{\sin n}{n^{2}}}{1+\lim _{n \rightarrow \infty} \frac{1}{n^{2}}}
$$

Now $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$. Since $-1 \leq \sin n \leq 1$, we have $-\frac{1}{n^{2}} \leq \frac{\sin n}{n^{2}} \leq \frac{1}{n^{2}}$ and $\lim _{n \rightarrow \infty}\left(-\frac{1}{n^{2}}\right)=$ $-\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$ also so by the squeeze theorem, $\lim _{n \rightarrow \infty} \frac{\sin n}{n^{2}}=0$. It follows that

$$
\lim _{n \rightarrow \infty} \frac{n+\sin n}{n^{2}+1} / \frac{1}{n}=\frac{1+0}{1+0}=1
$$

The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (p-test with $p=1$) so by the limit comparison test the given series diverges as well.

