Math 101 - SOLUTIONS TO WORKSHEET 26 THE COMPARISON TEST

1. Comparison by Massaging

(1) Determine, with explanation, whether the following series converge or diverge.

(a) (Final 2014) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$ **Solution:** For $n \ge 1$ we have $n^2 + 1 \le n^2 + n^2 = 2n^2$ so that $\frac{1}{\sqrt{n^2+1}} \ge \frac{1}{\sqrt{2n^2}} = \frac{1}{\sqrt{2}}\frac{1}{n}$. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (*p*-test with $p = 1 \le 1$) so by the comparison test the given series diverges as well.

Solution: (Really complicated) The function $f(x) = \frac{1}{\sqrt{x^2+1}}$ is positive and decreasing on $[0,\infty)$. Using the subbitutions $x = \tan \theta$ and $\sin \theta = u$ we have:

$$\int \frac{\mathrm{d}x}{\sqrt{1+x^2}} = \int \frac{\sec^2 \theta \,\mathrm{d}\theta}{\sqrt{1+\tan^2 \theta}}$$
$$= \int \frac{\sec^2 \theta \,\mathrm{d}\theta}{\sec \theta}$$
$$= \int \frac{\cos \theta \,\mathrm{d}\theta}{\cos^2 \theta}$$
$$= \int \frac{\mathrm{d}u}{1-u^2} = \frac{1}{2} \int \left[\frac{1}{1+u} + \frac{1}{1-u}\right] \mathrm{d}u$$
$$= \frac{1}{2} \log|1+u| - \frac{1}{2} \log|1-u| + C$$
$$= \frac{1}{2} \log\left|\frac{1+u}{1-u}\right| + C$$
$$= \frac{1}{2} \log\frac{1+\sin \theta}{1-\sin \theta} + C$$

(we don't need absolute values since $1 + \sin \theta$ and $1 - \sin \theta$ are both non-negative). Now $\sin \theta = \frac{x}{\sqrt{1+x^2}}$ so

$$\int \frac{\mathrm{d}x}{\sqrt{1+x^2}} = \frac{1}{2} \log \frac{1 + \frac{x}{\sqrt{1+x^2}}}{1 - \frac{x}{\sqrt{1+x^2}}} + C$$
$$= \frac{1}{2} \log \frac{\sqrt{1+x^2} + x}{\sqrt{1+x^2} - x} + C$$

Now

$$\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x} = \frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x} \cdot \frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}+x}$$
$$= \frac{\left(\sqrt{1+x^2}+x\right)^2}{1+x^2-x^2} = \left(\sqrt{1+x^2}+x\right)^2$$

so finally

$$\int \frac{\mathrm{d}x}{\sqrt{1+x^2}} = \frac{1}{2} \log \left(\sqrt{1+x^2} + x\right)^2 + C$$
$$= \log \left(\sqrt{1+x^2} + x\right) + C.$$

Date: 13/3/2017, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

We therefore have

$$\int_0^\infty \frac{\mathrm{d}x}{\sqrt{1+x^2}} = \lim_{T \to \infty} \int_0^T \frac{\mathrm{d}x}{\sqrt{1+x^2}}$$
$$= \lim_{T \to \infty} \left[\log\left(\sqrt{1+T^2} + T\right) - \log\left(\sqrt{1+0^2} + 0\right) \right]$$
$$= \lim_{T \to \infty} \log\left(\sqrt{1+T^2} + T\right) = \infty.$$

By the integral test the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{1+n^2}}$ diverges as well.

(b) (Final 2013, variant) $1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \frac{1}{81} + \frac{1}{121} + \cdots$ Solution: The series is $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$ and has positive terms. The *n*th odd number is 2n-1 so the series is

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \, .$$

For $n \ge 1$, $2n-1 \ge 2n-n = n$ so $\frac{1}{(2n-1)^2} \le \frac{1}{n^2}$. The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the *p*-test (p=2>1) so by the comparison test our series converges too.

(c) (Final 2013) $\sum_{n=1}^{\infty} \frac{n+\sin n}{1+n^2}$ **Solution:** For $n \ge 2$ we have $n + \sin n \ge n - 1 \ge n - \frac{n}{2}$ and $1 + n^2 \le 2n^2$ so that for $n \ge 2$ we have $\frac{n+\sin n}{n^2+1} \ge \frac{n/2}{2n^2} = \frac{1}{4n}$. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (*p*-test with p = 1) so by the comparison test the given series diverges as well. (d) $1 + \frac{1}{23} + \frac{1}{22} + \frac{1}{43} + \frac{1}{52} + \frac{1}{63} + \frac{1}{72} + \cdots$

Solution: Let
$$a_n$$
 be the *n*th term of the series (which is positive) so that $a_n = \begin{cases} \frac{1}{n^2} & n \text{ odd} \\ \frac{1}{n^3} & n \text{ even} \end{cases}$.

For $n \ge 1$ we have $\frac{1}{n^3} \le \frac{1}{n^2}$ so $a_n \le \frac{1}{n^2}$ in any case. Now $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the *p*-test (p=2>1) so by the comparison test the series $\sum_{n=1}^{\infty} a_n$ converges as well.

2. LIMIT COMPARISON TEST

(2) Determine, with explanation, whether the following series converge or diverge.

(a) (Final 2014) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$

Solution: We have $\lim_{n\to\infty} \frac{1}{n}/\frac{1}{\sqrt{n^2+1}} = \lim_{n\to\infty} \frac{\sqrt{n^2+1}}{n} = \lim_{n\to\infty} \sqrt{1+\frac{1}{n^2}} = 1$. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (*p*-test with p = 1) so by the limit comparison test our series dinverges as well.

(b) (Final 2013, variant) $1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \frac{1}{81} + \frac{1}{121} + \cdots$ Solution: The series is $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$ and has positive terms. The *n*th odd number is 2n-1 so the series is

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \, \cdot \,$$

Now $\lim_{n\to\infty} \frac{1}{n^2} / \frac{1}{(2n-1)^2} = \lim_{n\to\infty} \left(\frac{2n-1}{n}\right)^2 = \lim_{n\to\infty} \left(2 - \frac{1}{n}\right)^2 = 4$. The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the *p*-test (p = 2 > 1) so by the limit comparison test our series converges too. (c) (Final 2013) $\sum_{n=1}^{\infty} \frac{n+\sin n}{1+n^2}$

Solution: We have

$$\lim_{n \to \infty} \frac{n + \sin n}{n^2 + 1} / \frac{1}{n} = \lim_{n \to \infty} \frac{1 + \frac{\sin n}{n^2}}{1 + \frac{1}{n^2}} = \frac{1 + \lim_{n \to \infty} \frac{\sin n}{n^2}}{1 + \lim_{n \to \infty} \frac{1}{n^2}}$$

Now $\lim_{n\to\infty} \frac{1}{n^2} = 0$. Since $-1 \le \sin n \le 1$, we have $-\frac{1}{n^2} \le \frac{\sin n}{n^2} \le \frac{1}{n^2}$ and $\lim_{n\to\infty} \left(-\frac{1}{n^2}\right) = -\lim_{n\to\infty} \frac{1}{n^2} = 0$ also so by the squeeze theorem, $\lim_{n\to\infty} \frac{\sin n}{n^2} = 0$. It follows that

$$\lim_{n \to \infty} \frac{n + \sin n}{n^2 + 1} / \frac{1}{n} = \frac{1 + 0}{1 + 0} = 1.$$

The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (*p*-test with p = 1) so by the limit comparison test the given series diverges as well.