Math 101 - WORKSHEET 25
 THE INTEGRAL TEST

1. The integral test
(1) Decide if each series converges or diverges
(a) $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$
(b) (Final 2014) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$ (your answer will depend on p !)
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$
(2) The integral $\int_{2}^{\infty} \frac{x+\sin x}{1+x^{2}} \mathrm{~d} x$ diverges. Why can't we use the integral test to conlcude that $\sum_{n=2}^{\infty} \frac{n+\sin n}{1+n^{2}}$ diverges as well?
[^0]
2. Tail estimates (not examinable in Math 101)

Let $f(x)$ be positive and non-increasing on $[a, \infty)$. Then for $M>N>a$ we have

$$
\sum_{n=N}^{M} f(n) \geq \int_{N}^{M+1} f(x) \mathrm{d} x \geq \sum_{n=N+1}^{M+1} f(n)
$$

and hence

$$
\sum_{n=N}^{\infty} f(n) \geq \int_{N}^{\infty} f(x) \mathrm{d} x \geq \sum_{n=N+1}^{\infty} f(n)
$$

(3) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
(a) Show that $\sum_{n=N+1}^{\infty} \frac{1}{n^{2}} \leq \frac{1}{N}$.
(b) How many terms to we need to include to approximate the sum of the series within 10^{-5} ?
(3) (The harmonic series)
(a) Show that $\sum_{n=1}^{N} \frac{1}{n} \geq \log (N+1)$
(b) Show that $\sum_{n=1}^{N} \frac{1}{n} \leq(1-\log 2)+\log (N+1)$
(4) Bonus problem: $\gamma=\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\log (N+1)\right)$ exists.
(a) For $N \geq 1$ set $s_{N}=\sum_{n=1}^{N} \frac{1}{n}-\log (N+1)$ (set $\left.s_{0}=0\right)$ and let $a_{n}=s_{n}-s_{n-1}$. Show that $a_{n}=\frac{1}{n}-\log \left(1+\frac{1}{n}\right)$.
(b) Show that there is $C>0$ such that $0 \leq a_{n} \leq \frac{C}{n^{2}}$ for all $n \geq 1$. By the comparison test, $\sum_{n=1}^{\infty} a_{n}$ converges.
(c) Show that $s_{N}=\sum_{n=1}^{N} a_{n}$. It follows that $\left\{s_{N}\right\}_{n=1}^{\infty}$ converges.

The number γ is called the Euler-Mascheroni constant, its value is about 0.577.

[^0]: Date: 10/3/2017, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

