Math 101 – WORKSHEET 25 THE INTEGRAL TEST

1. The integral test

(1) Decide if each series converges or diverges (a) $\sum_{n=1}^{\infty} \frac{n}{e^n}$

(b) (Final 2014) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ (your answer will depend on p!)

(c) $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$

(2) The integral $\int_{2}^{\infty} \frac{x+\sin x}{1+x^2} dx$ diverges. Why can't we use the integral test to conclude that $\sum_{n=2}^{\infty} \frac{n+\sin n}{1+n^2}$ diverges as well?

Date: 10/3/2017, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

Let $f(x)$ be positive and non-inc	creasing on $[a, \infty)$. Then for $M > N > a$ we have
	$\sum_{n=N}^{M} f(n) \ge \int_{N}^{M+1} f(x) \mathrm{d}x \ge \sum_{n=N+1}^{M+1} f(n)$
and hence	$\sum_{n=N}^{\infty} f(n) \ge \int_{N}^{\infty} f(x) \mathrm{d}x \ge \sum_{n=N+1}^{\infty} f(n)$

2. TAIL ESTIMATES (NOT EXAMINABLE IN MATH 101)

(3) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (a) Show that $\sum_{n=N+1}^{\infty} \frac{1}{n^2} \leq \frac{1}{N}$.

(b) How many terms to we need to include to approximate the sum of the series within 10^{-5} ?

(3) (The harmonic series) (a) Show that $\sum_{n=1}^{N} \frac{1}{n} \ge \log(N+1)$

(b) Show that $\sum_{n=1}^{N} \frac{1}{n} \le (1 - \log 2) + \log(N+1)$

- (4) Bonus problem: γ = lim_{N→∞} (∑_{n=1}^N ¹/_n log(N + 1)) exists.
 (a) For N ≥ 1 set s_N = ∑_{n=1}^N ¹/_n log(N + 1) (set s₀ = 0) and let a_n = s_n s_{n-1}. Show that a_n = ¹/_n log (1 + ¹/_n).
 (b) Show that there is C > 0 such that 0 ≤ a_n ≤ C/n² for all n ≥ 1. By the comparison test, ∑_{n=1}[∞] a_n
 - converges.
 - (c) Show that $s_N = \sum_{n=1}^N a_n$. It follows that $\{s_N\}_{n=1}^{\infty}$ converges. The number γ is called the Euler-Mascheroni constant, its value is about 0.577.