Math 101 – SOLUTIONS TO WORKSHEET 25 THE INTEGRAL TEST

1. The integral test

- (1) Decide if each series converges or diverges
 - (a) $\sum_{n=1}^{\infty} \frac{n}{e^n}$

Solution: Let $f(x) = xe^{-x}$, so that the series is $\sum_{n=1}^{\infty} f(n)$. Then f(x) > 0 for all x. Also, we have $f'(x) = e^{-x} - xe^{-x} = (1 - x)e^{-x}$ which is negative for x > 1 so f is **eventually decreasing**. We know that $\int_0^\infty xe^{-x} dx$ converges (see previous worksheet) so by the integral test our series converges as well. (b) (Final 2014) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ (your answer will depend on p!)

Solution: Suppose p > 0 (if $p \le 0$ compare with $\sum_{n=1}^{\infty} \frac{1}{n}$ – see next lecture) and let $f(x) = \frac{1}{x(\log x)^p}$ so that the series is $\sum_{n=1}^{\infty} f(n)$. The function f is clearly both **positive** and **decreasing**, so by the integral test the series converges iff $\int_2^{\infty} f(x) dx$ converges. We consider

$$\int_2^\infty \frac{\mathrm{d}x}{x(\log x)^p}$$

Subtituting $u = \log x$ we have $\frac{\mathrm{d}x}{x} = \mathrm{d}u$ and $u \to \infty$ as $x \to \infty$ so we have

$$\int_{2}^{\infty} \frac{\mathrm{d}x}{x(\log x)^{p}} = \int_{2}^{\infty} \frac{\mathrm{d}u}{u^{p}}$$

which converges when p > 1 and diverges otherwise. By the integral test the same holds for our series.

(c) $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ **Solution:** Let $f(x) = \frac{1}{1+x^2}$ which is clearly **positive** and **decreasing**. By the integral test the series $\sum_{n=1}^{\infty} f(n)$ converges iff the integral $\int_{1}^{\infty} \frac{dx}{1+x^2}$ does. But

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{1+x^2} = \lim_{T \to \infty} \left(\arctan(T) - \arctan(1)\right) = \lim_{T \to \infty} \arctan(T) - \frac{\pi}{4} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4},$$

so the integtral and the series converge.

Solution: Let $f(x) = \frac{1}{1+x^2}$ which is clearly **positive** and **decreasing**. By the integral test the series $\sum_{n=1}^{\infty} f(n)$ converges iff the integral $\int_0^{\infty} \frac{dx}{1+x^2}$ does. Converges does not depend on the starting point so we consider $\int_1^{\infty} \frac{1}{1+x^2} dx$. Now $\frac{1}{1+x^2} < \frac{1}{x^2}$ and $\int_1^{\infty} \frac{dx}{x^2}$ converges by the *p*-test (2 > 1) so $\int_1^{\infty} \frac{dx}{1+x^2}$ converges by the comparison test, and $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ converges by the

(2) The integral $\int_{2}^{\infty} \frac{x+\sin x}{1+x^2} dx$ diverges. Why can't we use the integral test to conclude that $\sum_{n=2}^{\infty} \frac{n+\sin n}{1+n^2}$ diverges as well?

Solution: The function $f(x) = \frac{x + \sin x}{1 + x^2}$ isn't monotone:

$$f'(x) = \frac{(1+\cos x)(1+x^2) - 2x(x+\sin x)}{(1+x^2)^2}$$
$$= \frac{(1+\cos x - 2)x^2 - 2x\sin x + 1 + \cos x}{(1+x^2)^2}$$
$$= \frac{(\cos x - 1)x^2 - 2x\sin x + 1 + \cos x}{(1+x)^2}.$$

Date: 10/3/2017, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

In particular, if $x = 2\pi k$ ($k \in \mathbb{Z}$) then $\cos x = 1$, $\sin x = 0$ and

$$f'(x) = \frac{2}{(1+x^2)} > 0.$$

We'll later show that this series diverges.

2. Tail estimates (not examinable in Math
$$101$$
)

- (3) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (a) Show that $\sum_{n=N+1}^{\infty} \frac{1}{n^2} \leq \frac{1}{N}$. **Solution:** The function $f(x) = \frac{1}{x^2}$ is decreasing and positive. By the integral test, $\sum_{n=N+1}^{\infty} f(n) \leq \frac{1}{x^2}$
 - $\int_{N}^{\infty} f(x) dx = \left[-\frac{1}{x}\right]_{N}^{\infty} = \frac{1}{N}.$ (b) How many terms to we need to include to approximate the sum of the series within 10⁻⁵? **Solution:** We have $\sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{N} \frac{1}{n^2} + \sum_{n=N+1}^{\infty} \frac{1}{n^2}$. If $N = 10^5$ we see that

$$0 \le \sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{n=1}^{10^5} \frac{1}{n^2} \le 10^{-5}$$

- (3) (The harmonic series)

 - (The harmonic series) (a) Show that $\sum_{n=1}^{N} \frac{1}{n} \ge \log(N+1)$ **Solution:** $\sum_{n=1}^{N} \frac{1}{n} \ge \int_{1}^{N+1} \frac{dx}{x} = \log(N+1)$. (b) Show that $\sum_{n=1}^{N} \frac{1}{n} \le (1 \log 2) + \log(N+1)$ **Solution:** $\sum_{n=1}^{N} \frac{1}{n} \le 1 + \int_{2}^{N+1} \frac{dx}{x} = 1 + \log(N+1) \log 2$.
- (4) Bonus problem: $\gamma = \lim_{N \to \infty} \left(\sum_{n=1}^{N} \frac{1}{n} \log(N+1) \right)$ exists. (a) For $N \ge 1$ set $s_N = \sum_{n=1}^{N} \frac{1}{n} \log(N+1)$ (set $s_0 = 0$) and let $a_n = s_n s_{n-1}$. Show that $a_n = \frac{1}{n} - \log\left(1 + \frac{1}{n}\right).$

Solution: We calculate:

s

$$N - s_{N-1} = \left(\sum_{n=1}^{N} \frac{1}{n} - \log(N+1) \right) - \left(\sum_{n=1}^{N-1} \frac{1}{n} - \log(N) \right)$$

$$= \left(\sum_{n=1}^{N} \frac{1}{n} - \sum_{n=1}^{N-1} \frac{1}{n} \right) - \left(\log(N+1) - \log(N) \right)$$

$$= \frac{1}{N} - \log\left(\frac{N+1}{N}\right)$$

$$= \frac{1}{N} - \log\left(1 + \frac{1}{N}\right) .$$

(b) Show that there is C > 0 such that $0 \le a_n \le \frac{C}{n^2}$ for all $n \ge 1$. By the comparison test, $\sum_{n=1}^{\infty} a_n$ converges.

Solution: The function $f(x) = \log(1+x)$ is differentiable; we have $f'(x) = \frac{1}{1+x}$, $f''(x) = -\frac{1}{(1+x)^2}$, $f^{(3)}(x) = \frac{2}{(1+x)^3}$. Thus f(0) = 0, f'(0) = 1, f''(0) = -1 and hence for $x \ge 0$ we have

$$f(x) = x - \frac{1}{2}x^2 + \frac{1}{3}\frac{x^3}{(1+\xi)^3}$$

for some $\xi \in (0, x)$. For $0 \le x \le 1$ we see that $\xi \ge 0$ and hence

$$0 \le \frac{1}{3} \frac{x^3}{(1+\xi)^3} \le \left(\frac{x}{3(1+\xi)^3}\right) x^2 \le \frac{1}{3} x^2.$$

It follows that for $0 \le x \le 1$ we have

$$x - \frac{1}{2}x^{2} \le \log(1+x) \le x - \frac{1}{2}x^{2} + \frac{1}{3}x^{2}$$

and hence

$$\frac{1}{6}x^2 \le x - \log(1+x) \le \frac{1}{2}x^2.$$

Plugging in $x = \frac{1}{n}$ gives the claim. (c) Show that $s_N = \sum_{n=1}^{N} a_n$. It follows that $\{s_N\}_{n=1}^{\infty}$ converges. **Solution:** This is a telescoping series: $\sum_{n=1}^{N} a_n = (s_1 - s_0) + (s_2 - s_1) + \dots + (s_N - s_{N-1}) = \frac{1}{2}$ $s_N - s_0 = s_N.$

The number γ is called the Euler–Mascheroni constant, its value is about 0.577.