Math 101 - SOLUTIONS TO WORKSHEET 25 THE INTEGRAL TEST

1. The integral test

(1) Decide if each series converges or diverges
(a) $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$

Solution: Let $f(x)=x e^{-x}$, so that the series is $\sum_{n=1}^{\infty} f(n)$. Then $f(x)>0$ for all x. Also, we have $f^{\prime}(x)=e^{-x}-x e^{-x}=(1-x) e^{-x}$ which is negative for $x>1$ so f is eventually decreasing. We know that $\int_{0}^{\infty} x e^{-x} \mathrm{~d} x$ converges (see previous worksheet) so by the integral test our series converges as well.
(b) (Final 2014) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$ (your answer will depend on p !)

Solution: Suppose $p>0$ (if $p \leq 0$ compare with $\sum_{n=1}^{\infty} \frac{1}{n}$ - see next lecture) and let $f(x)=\frac{1}{x(\log x)^{p}}$ so that the series is $\sum_{n=1}^{\infty} f(n)$. The function f is clearly both positive and decreasing, so by the integral test the series converges iff $\int_{2}^{\infty} f(x) \mathrm{d} x$ converges. We consider

$$
\int_{2}^{\infty} \frac{\mathrm{d} x}{x(\log x)^{p}}
$$

Susbtituting $u=\log x$ we have $\frac{\mathrm{d} x}{x}=\mathrm{d} u$ and $u \rightarrow \infty$ as $x \rightarrow \infty$ so we have

$$
\int_{2}^{\infty} \frac{\mathrm{d} x}{x(\log x)^{p}}=\int_{2}^{\infty} \frac{\mathrm{d} u}{u^{p}}
$$

which converges when $p>1$ and diverges otherwise. By the integral test the same holds for our series.
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$

Solution: Let $f(x)=\frac{1}{1+x^{2}}$ which is clearly positive and decreasing. By the integral test the series $\sum_{n=1}^{\infty} f(n)$ converges iff the integral $\int_{1}^{\infty} \frac{\mathrm{d} x}{1+x^{2}}$ does. But
$\int_{1}^{\infty} \frac{\mathrm{d} x}{1+x^{2}}=\lim _{T \rightarrow \infty}(\arctan (T)-\arctan (1))=\lim _{T \rightarrow \infty} \arctan (T)-\frac{\pi}{4}=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$,
so the integtral and the series converge.
Solution: Let $f(x)=\frac{1}{1+x^{2}}$ which is clearly positive and decreasing. By the integral test the series $\sum_{n=1}^{\infty} f(n)$ converges iff the integral $\int_{0}^{\infty} \frac{\mathrm{d} x}{1+x^{2}}$ does. Converges does not depend on the starting point so we consider $\int_{1}^{\infty} \frac{1}{1+x^{2}} \mathrm{~d} x$. Now $\frac{1}{1+x^{2}}<\frac{1}{x^{2}}$ and $\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{2}}$ converges by the p-test $(2>1)$ so $\int_{1}^{\infty} \frac{\mathrm{d} x}{1+x^{2}}$ converges by the comparison test, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ converges by the integral test.
(2) The integral $\int_{2}^{\infty} \frac{x+\sin x}{1+x^{2}} \mathrm{~d} x$ diverges. Why can't we use the integral test to conlcude that $\sum_{n=2}^{\infty} \frac{n+\sin n}{1+n^{2}}$ diverges as well?

Solution: The function $f(x)=\frac{x+\sin x}{1+x^{2}}$ isn't monotone:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(1+\cos x)\left(1+x^{2}\right)-2 x(x+\sin x)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{(1+\cos x-2) x^{2}-2 x \sin x+1+\cos x}{\left(1+x^{2}\right)^{2}} \\
& =\frac{(\cos x-1) x^{2}-2 x \sin x+1+\cos x}{(1+x)^{2}}
\end{aligned}
$$

In particular, if $x=2 \pi k(k \in \mathbb{Z})$ then $\cos x=1, \sin x=0$ and

$$
f^{\prime}(x)=\frac{2}{\left(1+x^{2}\right)}>0
$$

We'll later show that this series diverges.

2. Tail estimates (not examinable in Math 101)

(3) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
(a) Show that $\sum_{n=N+1}^{\infty} \frac{1}{n^{2}} \leq \frac{1}{N}$.

Solution: The fucntion $f(x)=\frac{1}{x^{2}}$ is decreasing and positive. By the integral test, $\sum_{n=N+1}^{\infty} f(n) \leq$ $\int_{N}^{\infty} f(x) \mathrm{d} x=\left[-\frac{1}{x}\right]_{N}^{\infty}=\frac{1}{N}$.
(b) How many terms to we need to include to approximate the sum of the series within 10^{-5} ?

Solution: We have $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\sum_{n=1}^{N} \frac{1}{n^{2}}+\sum_{n=N+1}^{\infty} \frac{1}{n^{2}}$. If $N=10^{5}$ we see that

$$
0 \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}-\sum_{n=1}^{10^{5}} \frac{1}{n^{2}} \leq 10^{-5}
$$

(3) (The harmonic series)
(a) Show that $\sum_{n=1}^{N} \frac{1}{n} \geq \log (N+1)$

Solution: $\quad \sum_{n=1}^{N} \frac{1}{n} \geq \int_{1}^{N+1} \frac{\mathrm{~d} x}{x}=\log (N+1)$.
(b) Show that $\sum_{n=1}^{N} \frac{1}{n} \leq(1-\log 2)+\log (N+1)$

Solution: $\quad \sum_{n=1}^{N} \frac{1}{n} \leq 1+\int_{2}^{N+1} \frac{\mathrm{~d} x}{x}=1+\log (N+1)-\log 2$.
(4) Bonus problem: $\gamma=\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\log (N+1)\right)$ exists.
(a) For $N \geq 1$ set $s_{N}=\sum_{n=1}^{N} \frac{1}{n}-\log (N+1)$ (set $s_{0}=0$) and let $a_{n}=s_{n}-s_{n-1}$. Show that $a_{n}=\frac{1}{n}-\log \left(1+\frac{1}{n}\right)$.
Solution: We calculate:

$$
\begin{aligned}
s_{N}-s_{N-1} & =\left(\sum_{n=1}^{N} \frac{1}{n}-\log (N+1)\right)-\left(\sum_{n=1}^{N-1} \frac{1}{n}-\log (N)\right) \\
& =\left(\sum_{n=1}^{N} \frac{1}{n}-\sum_{n=1}^{N-1} \frac{1}{n}\right)-(\log (N+1)-\log (N)) \\
& =\frac{1}{N}-\log \left(\frac{N+1}{N}\right) \\
& =\frac{1}{N}-\log \left(1+\frac{1}{N}\right)
\end{aligned}
$$

(b) Show that there is $C>0$ such that $0 \leq a_{n} \leq \frac{C}{n^{2}}$ for all $n \geq 1$. By the comparison test, $\sum_{n=1}^{\infty} a_{n}$ converges.
Solution: The function $f(x)=\log (1+x)$ is differentiable; we have $f^{\prime}(x)=\frac{1}{1+x}, f^{\prime \prime}(x)=$ $-\frac{1}{(1+x)^{2}}, f^{(3)}(x)=\frac{2}{(1+x)^{3}}$. Thus $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=-1$ and hence for $x \geq 0$ we have

$$
f(x)=x-\frac{1}{2} x^{2}+\frac{1}{3} \frac{x^{3}}{(1+\xi)^{3}}
$$

for some $\xi \in(0, x)$. For $0 \leq x \leq 1$ we see that $\xi \geq 0$ and hence

$$
0 \leq \frac{1}{3} \frac{x^{3}}{(1+\xi)^{3}} \leq\left(\frac{x}{3(1+\xi)^{3}}\right) x^{2} \leq \frac{1}{3} x^{2}
$$

It follows that for $0 \leq x \leq 1$ we have

$$
x-\frac{1}{2} x^{2} \leq \log (1+x) \leq x-\frac{1}{2} x^{2}+\frac{1}{3} x^{2}
$$

and hence

$$
\frac{1}{6} x^{2} \leq x-\log (1+x) \leq \frac{1}{2} x^{2}
$$

Plugging in $x=\frac{1}{n}$ gives the claim.
(c) Show that $s_{N}=\sum_{n=1}^{N} a_{n}$. It follows that $\left\{s_{N}\right\}_{n=1}^{\infty}$ converges.

Solution: This is a telescoping series: $\sum_{n=1}^{N} a_{n}=\left(s_{1}-s_{0}\right)+\left(s_{2}-s_{1}\right)+\cdots+\left(s_{N}-s_{N-1}\right)=$ $s_{N}-s_{0}=s_{N}$.
The number γ is called the Euler-Mascheroni constant, its value is about 0.577.

