Math 101 - SOLUTIONS TO WORKSHEET 24 SERIES

1. Review: Geometric and telescoping series

(1) Decide whether the following series converge or diverge
(a) $\sum_{n=5}^{\infty} \frac{\pi^{2 n+3}}{9^{n-2}}$

Solution: This is a geometric series with ratio $\frac{\pi^{2}}{9}=\left(\frac{\pi}{3}\right)^{2}>1$ so the terms escape to infinity and the series diverges.
(b) $\sum_{n=5}^{\infty} \frac{e^{2 n+2}}{9^{n-2}}$

Solution: This is a geometric series with ratio $\frac{e^{2}}{9}=\left(\frac{e}{3}\right)^{2}<1$ so it is convergent.
(c) $\sum_{n=1}^{\infty}\left(n^{2}-(n+1)^{2}\right)$

Solution: The nth partial sum is $\left(1^{2}-2^{2}\right)+\left(2^{2}-3^{2}\right)+\cdots+\left(n^{2}-(n+1)^{2}\right)=1^{2}-(n+1)^{2}$ and these clearly tend to $-\infty$ as $n \rightarrow \infty$ so the series diverges.

2. Skill 1: elements of a convergent series

(2) Show the following series diverge
(a) $\sum_{n=1}^{\infty}(-1)^{n}$

Solution: The terms have magnitude 1, don't decay to zero.
(b) $\sum_{n=0}^{\infty} n^{2} \sin (n)$

Solution: There are large values of n where $\sin (n)$ is close to 1 so $n^{2} \sin (n)$ is large.
(c) $\sum_{n=1}^{\infty} \frac{n+\sin n}{n}$

Solution: $\lim _{n \rightarrow \infty} \frac{n+\sin n}{n}=1+\lim _{n \rightarrow \infty} \frac{\sin n}{n}=1 \neq 0$.

3. Review of improper integrals

(3) Show the following series divergeShow that $\int_{2}^{\infty} \frac{\mathrm{d} x}{x}$ diverges.

Solution: $\int_{2}^{T} \frac{\mathrm{~d} x}{x}=\log T-\log 2 \xrightarrow[T \rightarrow \infty]{ } \infty$
(3) Show that $\int_{2}^{\infty} \frac{d x}{x^{3}+5}$ converges.

Solution: For $x>0$ we have $x^{3}+5>x^{3}>0$ so $0<\frac{1}{x^{3}+5}<\frac{1}{x^{3}}$ and $\int_{2}^{T} \frac{\mathrm{~d} x}{x^{3}}=\frac{1}{2}\left(\frac{1}{2^{2}}-\frac{1}{T^{2}}\right) \xrightarrow[T \rightarrow \infty]{ }$ $\frac{1}{8}$ so the integral converges by the comparison test.
(4) Evaluate $\int_{0}^{\infty} x e^{-x} \mathrm{~d} x$.

Solution: We integrate by parts:

$$
\begin{aligned}
\int_{0}^{T} x e^{-x} \mathrm{~d} x & =\left[-x e^{-x}\right]_{0}^{T}-\int_{0}^{T}\left(-e^{-x}\right) \mathrm{d} x=-T e^{-T}+\left[e^{-x}\right]_{0}^{T}=1-T e^{-T}-e^{-T} \\
& =1-\frac{T+1}{e^{T}}
\end{aligned}
$$

Now as $T \rightarrow \infty$ by l'Hôpital,

$$
\lim _{T \rightarrow \infty} \frac{T+1}{e^{T}}=\lim _{T \rightarrow \infty} \frac{1}{e^{T}}=0
$$

so

$$
\int_{0}^{\infty} x e^{-x} \mathrm{~d} x=\lim _{T \rightarrow \infty} \int_{0}^{T} x e^{-x} \mathrm{~d} x=1
$$

4. Skill 2: The Integral test

(6) Decide whether the following series converge or diverge.
(a) $\sum_{n=1}^{\infty} \frac{1}{n}$

Solution: $f(x)=\frac{1}{x}$ is decreasing and positive and $\int_{2}^{\infty} \frac{\mathrm{d} x}{x}=\infty$ so the series diverges.
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ (your answer will depend on p).

Solution: $f(x)=\frac{1}{x}$ is decreasing and $\int_{2}^{\infty} \frac{\mathrm{d} x}{x}=\infty$ so the series diverges.

