Math 101 - SOLUTIONS TO WORKSHEET 23 SERIES

1. Tool: Squeeze Theorem

(1) Determine if each sequence is convergent or divergent. If convergent, evaluate the limit.
(a) (Final 2013) $\left\{(-1)^{n} \sin \left(\frac{1}{n}\right)\right\}_{n=1}^{\infty}$.

Solution: For $n \geq 1, \sin \left(\frac{1}{n}\right) \geq 0$ so

$$
-\sin \left(\frac{1}{n}\right) \leq(-1)^{n} \sin \left(\frac{1}{n}\right) \leq \sin \left(\frac{1}{n}\right) .
$$

We have seen in $1(\mathrm{~d})$ that $\lim _{n \rightarrow \infty} \sin \left(\frac{1}{n}\right)=0$ and it follows that $\lim _{n \rightarrow \infty}\left(-\sin \left(\frac{1}{n}\right)\right)=$ $-\lim _{n \rightarrow \infty} \sin \left(\frac{1}{n}\right)=0$ as well. By the squeeze theorem we conclude that

$$
\lim _{n \rightarrow \infty}(-1)^{n} \sin \left(\frac{1}{n}\right)=0
$$

(b) (Final 2011) $\left\{\frac{\sin (n)}{\log (n)}\right\}_{n=2}^{\infty}$ (why do we have $n \geq 2$ here?)

Solution: Since $\lim _{n \rightarrow \infty} \log (n)=\lim _{x \rightarrow \infty} \log (x)=\infty$, we have $\lim _{n \rightarrow \infty} \frac{1}{\log n}=0$. Also, for every n we have $-1 \leq \sin n \leq 1$ so that

$$
-\frac{1}{\log n} \leq \frac{\sin n}{\log n} \leq \frac{1}{\log n}
$$

Since $\lim _{n \rightarrow \infty}-\frac{1}{\log n}=-\lim _{n \rightarrow \infty} \frac{1}{\log n}=0$ also, we have by the squeeze theorem that

$$
\lim _{n \rightarrow \infty} \frac{\sin n}{\log n}=0
$$

(c) (Math 105 Final 2012) $a_{n}=1+\frac{n!\sin \left(n^{3}\right)}{(n+1)!}$.

Solution: We have $(n+1)!=n!(n+1)$ so $a_{n}=1+\frac{\sin \left(n^{3}\right)}{n+1}$, and for every n we have $-1 \leq \sin \left(n^{3}\right) \leq 1$ so that

$$
1-\frac{1}{n+1} \leq 1+\frac{\sin \left(n^{3}\right)}{n+1} \leq 1+\frac{1}{n+1} .
$$

Now $\lim _{n \rightarrow \infty}\left(1 \pm \frac{1}{n+1}\right)=1 \pm \lim _{x \rightarrow \infty} \frac{1}{x}=1$ and it follows from the squeeze theorem that

$$
\lim _{n \rightarrow \infty} 1+\frac{n!\sin \left(n^{3}\right)}{(n+1)!}=1
$$

2. Skill 1: Geometric series and decimal expansions

(1) (Final 2013) Find the sum of the series $\sum_{n=2}^{\infty} \frac{3 \cdot 4^{n+1}}{8 \cdot 5^{n}}$. Simplify your answer.

Solution: We write this as $\sum_{n=2}^{\infty} \frac{12}{8}\left(\frac{4}{5}\right)^{n}$ so this is a geometric series with ratio $\frac{4}{5}$ and first term $\frac{3}{2}\left(\frac{4}{5}\right)^{2}$. Its sum is therefore

$$
\frac{3}{2} \frac{(4 / 5)^{2}}{1-\frac{4}{5}}=\frac{3 \cdot 16}{2 \cdot 5 \cdot 5 \cdot\left(1-\frac{4}{5}\right)}=\frac{24}{5 \cdot(5-4)}=\frac{24}{5} .
$$

(2) Express each decimal expansion using a geometric series, sum the series, then simplify to obtain a rational number.
(a) $0.333333 \ldots$

Solution: We have $0.33333 \ldots=\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\cdots=\frac{3}{10} \cdot \frac{1}{1-\frac{1}{10}}=\frac{3}{9}=\frac{1}{3}$.
(b) $0.5757575757 \ldots$

Solution: This is $\frac{57}{100}+\frac{57}{(100)^{2}}+\frac{57}{(100)^{3}}+\cdots=\frac{57}{100} \cdot \frac{1}{1-\frac{1}{100}}=\frac{57}{99}$.
(c) $0.6545454545454 \ldots$

Solution: Here we have to be more careful:

$$
\begin{aligned}
0.6545454545454 \ldots & =0.6+\frac{54}{1000}+\frac{54}{100,000}+\frac{54}{10,000,000}+\cdots=0.6+\frac{54}{1000}\left(1+\frac{1}{100}+\frac{1}{(100)^{2}}+\frac{1}{(100)^{3}}+\cdots\right) \\
& =0.6+\frac{54}{1000} \cdot \frac{1}{1-\frac{1}{100}}=\frac{6}{10}+\frac{54}{10 \cdot 99}=\frac{3}{5}+\frac{3}{5 \cdot 11}=\frac{3 \cdot 12}{5 \cdot 11}=\frac{36}{55}
\end{aligned}
$$

3. Skill 2: Telescoping SERIES

(3) Write an expression for the partial sums, decide if the series converges, and if so determine the sum.
(a) (Final 2015) $\sum_{n=3}^{\infty}\left(\cos \left(\frac{\pi}{n}\right)-\cos \left(\frac{\pi}{n+1}\right)\right)$

Solution: The N th partial sum is

$$
\left(\cos \left(\frac{\pi}{3}\right)-\cos \left(\frac{\pi}{4}\right)\right)+\left(\cos \left(\frac{\pi}{5}\right)-\cos \left(\frac{\pi}{6}\right)\right)+\left(\cos \left(\frac{\pi}{7}\right)-\cos \left(\frac{\pi}{8}\right)\right)+\cdots+\left(\cos \left(\frac{\pi}{N}\right)-\cos \left(\frac{\pi}{N+1}\right)\right)
$$

where every cosine cancels except for the first and the last giving us

$$
s_{N}=\cos \left(\frac{\pi}{3}\right)-\cos \left(\frac{\pi}{N+1}\right)
$$

This converges as $N \rightarrow \infty$ with

$$
\lim _{N \rightarrow \infty} s_{N}=\cos \left(\frac{\pi}{3}\right)-\cos (0)=\frac{1}{2}-1=-\frac{3}{2} .
$$

(b) $\sum_{n=1}^{\infty}\left(n^{2}-(n+1)^{2}\right)$

Solution: The nth partial sum is $\left(1^{2}-2^{2}\right)+\left(2^{2}-3^{2}\right)+\cdots+\left(n^{2}-(n+1)^{2}\right)=1^{2}-(n+1)^{2}$ and these clearly tend to $-\infty$ as $n \rightarrow \infty$ so the series diverges.
(c) $\sum_{n=1}^{\infty} \frac{2}{n(n+2)}$

Solution: We have $\frac{2}{n(n+2)}=\frac{1}{n}-\frac{1}{n+2}$ (partial fractions). Writing the partial sum

$$
\left(1-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n+1}\right)+\left(\frac{1}{n}-\frac{1}{n+2}\right)
$$

we see that every fraction appears twice (with opposite signs) except for $1, \frac{1}{2},-\frac{1}{n+1},-\frac{1}{n+2}$ so

$$
s_{n}=1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}
$$

Thus

$$
\lim _{n \rightarrow \infty} s_{n}=\frac{3}{2}-0-0=\frac{3}{2}
$$

and the series converges to $\frac{3}{2}$.
(d) $\sum_{n=0}^{\infty}(\arctan (n)-\arctan (n+1))$

Solution: The nth partial sum is

$$
\begin{gathered}
(\arctan (0)-\arctan (1))+(\arctan (1)-\arctan (2))+\cdots+(\arctan (n-1)-\arctan (n))=\arctan (0)-\arctan (n) \\
=-\arctan (n)
\end{gathered}
$$

Now $\lim _{n \rightarrow \infty} \arctan (n)=\lim _{x \rightarrow \infty} \arctan (x)=\frac{\pi}{2}$ so the series converges to $-\frac{\pi}{2}$.

