Math 101 - SOLUTIONS TO WORKSHEET 22 SEQUENCES

1. Skill 1: EXPRESSIONS FOR SEQUENCES

(1) For each of the following sequences, write a formula for the general term
(a) $\{1,2,3,4,5,6, \cdots\}$

Solution: $a_{n}=n$.
(b) $\left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \frac{1}{36}, \cdots\right\}$

Solution: $\quad a_{n}=\frac{1}{n^{2}}$
(c) $\{3,7,11,15,19, \cdots\}$

Solution: $a_{n}=4 n-1$.
(d) $\left\{\frac{7}{9}, \frac{7}{27}, \frac{7}{81}, \frac{7}{243}, \frac{7}{729}, \frac{7}{3187}, \cdots\right\}$

Solution: $a_{n}=\frac{7}{3^{n+1}}$.
(e) $\left\{\frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{1}{4}, \frac{5}{32}, \frac{3}{32}, \frac{7}{128}, \frac{1}{32}, \frac{9}{512}, \frac{5}{512} \cdots\right\}=\left\{\frac{1}{2}, \frac{2}{4}, \frac{3}{8}, \frac{4}{16}, \frac{5}{32}, \frac{6}{64}, \frac{7}{128}, \frac{8}{256}, \frac{9}{512}, \frac{10}{1024}, \cdots\right\}$

Solution: $a_{n}=\frac{n}{2^{n}}$.
(f) $\{1,-1,1,-1,1,-1,1,-1,1,-1,1,-1, \cdots\}$

Solution: $\quad a_{n}=(-1)^{n-1}$.
(g) $\left\{0, \frac{3}{8}, \frac{2}{27}, \frac{5}{64}, \frac{4}{125}, \frac{7}{216}, \frac{6}{343}, \frac{9}{512}, \frac{8}{729}, \frac{11}{1000}, \cdots\right\}$

Solution: $a_{n}=\frac{n+(-1)^{n}}{n^{3}}$

2. Skill 2: Limits of SEQUENCES

(2) Determine if the sequences is convergent of divergent. If convergent, evaluate the limit.
(a) $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$

Solution: $\lim _{n \rightarrow \infty} \frac{1}{n}=\lim _{x \rightarrow \infty} \frac{1}{x}=0$.
(b) $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$

Solution: $\quad \lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{x \rightarrow \infty} \frac{1}{1+\frac{1}{x}}=\frac{1}{1+0}=1$.
(c) $\{\sin (n)\}_{n=5}^{\infty}$

Solution: The function oscillates and the sequence is divergent.
(d) $\left\{\sin \left(\frac{1}{n}\right)\right\}_{n=1}^{\infty}$

Solution: Since the sine function is continouous we have $\lim _{n \rightarrow \infty} \sin \left(\frac{1}{n}\right)=\sin \left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)=$ $\sin 0=0$.
(3) Further problems
(a) Does $\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n+1000}}$ exist?

Solution: No. We have $\frac{n}{\sqrt{n+1000}}=\frac{\sqrt{n} \sqrt{n}}{\sqrt{n+1000}}=\frac{\sqrt{n}}{\sqrt{1+\frac{1000}{n}}} \xrightarrow[n \rightarrow \infty]{ } \infty$.
Solution: No. $\frac{n}{\sqrt{n+1000}}=\frac{1}{\sqrt{\frac{n}{n^{2}}+\frac{1000}{n^{2}}}}=\frac{1}{\sqrt{\frac{1}{n}+\frac{1000}{n^{2}}}}$. We can see that the denominator tends to 0 so the sequence diverges to ∞.
(b) $\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=$

Solution: We have $\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=\lim _{x \rightarrow \infty} \frac{x}{2^{x}}=\lim _{x \rightarrow \infty} \frac{1}{(\log 2) 2^{x}}=0$ by l'Hopital.
(c) (Math 103 final, 2014) Consider the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{1,0, \frac{1}{2}, 0,0, \frac{1}{3}, 0,0,0, \frac{1}{4}, 0,0,0,0, \frac{1}{5}, \cdots\right\}$.

Decide whether $\lim _{n \rightarrow \infty} a_{n}=0$.
Solution: Yes, the limit is zero.

3. Tool: Squeeze Theorem

(4) Determine if each sequence is convergent or divergent. If convergent, evaluate the limit.
(a) (Final 2013) $\left\{(-1)^{n} \sin \left(\frac{1}{n}\right)\right\}_{n=1}^{\infty}$.

Solution: For $n \geq 1, \sin \left(\frac{1}{n}\right) \geq 0$ so

$$
-\sin \left(\frac{1}{n}\right) \leq(-1)^{n} \sin \left(\frac{1}{n}\right) \leq \sin \left(\frac{1}{n}\right)
$$

We have seen in $1(\mathrm{~d})$ that $\lim _{n \rightarrow \infty} \sin \left(\frac{1}{n}\right)=0$ and it follows that $\lim _{n \rightarrow \infty}\left(-\sin \left(\frac{1}{n}\right)\right)=$ $-\lim _{n \rightarrow \infty} \sin \left(\frac{1}{n}\right)=0$ as well. By the squeeze theorem we conclude that

$$
\lim _{n \rightarrow \infty}(-1)^{n} \sin \left(\frac{1}{n}\right)=0
$$

(b) (Final 2011) $\left\{\frac{\sin (n)}{\log (n)}\right\}_{n=2}^{\infty}$ (why do we have $n \geq 2$ here?)

Solution: Since $\lim _{n \rightarrow \infty} \log (n)=\lim _{x \rightarrow \infty} \log (x)=\infty$, we have $\lim _{n \rightarrow \infty} \frac{1}{\log n}=0$. Also, for every n we have $-1 \leq \sin n \leq 1$ so that

$$
-\frac{1}{\log n} \leq \frac{\sin n}{\log n} \leq \frac{1}{\log n}
$$

Since $\lim _{n \rightarrow \infty}-\frac{1}{\log n}=-\lim _{n \rightarrow \infty} \frac{1}{\log n}=0$ also, we have by the squeeze theorem that

$$
\lim _{n \rightarrow \infty} \frac{\sin n}{\log n}=0
$$

(c) (Math 105 Final 2012) $a_{n}=1+\frac{n!\sin \left(n^{3}\right)}{(n+1)!}$.

Solution: We have $(n+1)!=n!(n+1)$ so $a_{n}=1+\frac{\sin \left(n^{3}\right)}{n+1}$, and for every n we have $-1 \leq \sin \left(n^{3}\right) \leq 1$ so that

$$
1-\frac{1}{n+1} \leq 1+\frac{\sin \left(n^{3}\right)}{n+1} \leq 1+\frac{1}{n+1}
$$

Now $\lim _{n \rightarrow \infty}\left(1 \pm \frac{1}{n+1}\right)=1 \pm \lim _{x \rightarrow \infty} \frac{1}{x}=1$ and it follows from the squeeze theorem that

$$
\lim _{n \rightarrow \infty} 1+\frac{n!\sin \left(n^{3}\right)}{(n+1)!}=1
$$

