Math 101 – SOLUTIONS TO WORKSHEET 21 SEPARABLE DIFFERENTIAL EQUATIONS

1. What is a DE?

- (1) Consider the differential equation $y' = 3y^2$
 - (a) For which values of C, D is $f(x) = Cx^D$ a solution to the equation? **Solution:** Plug in to get $CDx^{D-1} = 3C^2x^{2D}$ so we need 2D = D-1 (D = -1) and $CD = 3C^2$ so either C = 0 (f(x) = 0 is a solution!) or D = -1 and $C = \frac{D}{3} = -\frac{1}{3}$.

$$f(x) = -\frac{1}{3x}$$

is the solution.

(b) Suppose f(x) is a solution. Show that f(x-a) is also a solution for any a. What is the solution with f(0) = 1?

Solution: Let $f(x) = -\frac{1}{3(x-a)}$. Then $f'(x) = \frac{1}{3(x-a)^2}$ while $3(f(x))^2 = \frac{3}{9(x-a)^2} = \frac{1}{3(x-a)^2}$ so indeed this is a solution. We need a such that $-\frac{1}{3(0-a)} = 1$, that is

$$\frac{1}{3a} = 1$$

so $a = \frac{1}{3}$ and $f(x) = \frac{1}{1-3x}$ is the solution.

2. Separation of variables

- (2) Solve the following equations using separation of variables
 - (a) $y' = x^3$
 - (b) y' = 5y
 - (c) (Final, 2012) y' = xy, y(0) = e.
- (3) (Final 2014) Find the solution of the DE $x \frac{dy}{dx} + y = y^2$ that satisfies y(1) = -1. Solution: Write this as $x \frac{dy}{dx} = y^2 - y$ so

$$\frac{\mathrm{d}y}{y^2 - y} = \frac{\mathrm{d}x}{x}$$

We now integrate both sides.

$$\int \frac{\mathrm{d}x}{x} = \log|x| + C$$

while

$$\int \frac{\mathrm{d}y}{y(y-1)} = \int \left(\frac{1}{y-1} - \frac{1}{y}\right) \mathrm{d}y = \log|y-1| - \log|y| + D$$
$$= \log\left|\frac{y-1}{y}\right| + D.$$

We conclue that

$$\log |x| + C = \log \left| \frac{y - 1}{y} \right| + D.$$

Date: 1/3/2017, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

Exponentiating both sides we get:

$$|x|e^{C-D} = \left|\frac{y-1}{y}\right|.$$

Writing $A = \pm e^{C-D}$ so that the signs come out right we get

$$Ax = \frac{y-1}{y} = 1 - \frac{1}{y}$$
$$\frac{1}{y} = 1 - Ax$$

so that

and

$$y = \frac{1}{1 - Ax}.$$

We need the solution such that y(1) = -1 that is such that $-1 = \frac{1}{1-A}$ which means 1 - A = -1 so A = 2 and the solution is

$$y = \frac{1}{1 - 2x}.$$

- (4) A physical system satisfies the equation ¹/₂mv² + ¹/₂kx² = E. There m, k, E are constants (mass, spring constant, energy, respectively) and v = ^{dx}/_{dt} is the velocity.
 (a) Solve the equation to obtain ^{dx}/_{dt} = v = Solution: v = √(^{2E}/_m ^k/_mx²).
 (b) Suppose m = k = 1 and E = ¹/_m Integrate both sides of ^{dx}/_{dt} = dt and find a formula for

- (b) Suppose m = k = 1 and $E = \frac{1}{2}$. Integrate both sides of $\frac{dx}{\sqrt{1-x^2}} = dt$ and find a formula for x = x(t).
- (c) Solve the problem for general m, k, E.