Math 101 - SOLUTIONS TO WORKSHEET 21 SEPARABLE DIFFERENTIAL EQUATIONS

1. What is A DE?

(1) Consider the differential equation $y^{\prime}=3 y^{2}$
(a) For which values of C, D is $f(x)=C x^{D}$ a solution to the equation?

Solution: Plug in to get $C D x^{D-1}=3 C^{2} x^{2 D}$ so we need $2 D=D-1(D=-1)$ and $C D=3 C^{2}$ so either $C=0\left(f(x)=0\right.$ is a solution!) or $D=-1$ and $C=\frac{D}{3}=-\frac{1}{3}$.

$$
f(x)=-\frac{1}{3 x}
$$

is the solution.
(b) Suppose $f(x)$ is a solution. Show that $f(x-a)$ is also a solution for any a. What is the solution with $f(0)=1$?
Solution: Let $f(x)=-\frac{1}{3(x-a)}$. Then $f^{\prime}(x)=\frac{1}{3(x-a)^{2}}$ while $3(f(x))^{2}=\frac{3}{9(x-a)^{2}}=\frac{1}{3(x-a)^{2}}$ so indeed this is a solution. We need a such that $-\frac{1}{3(0-a)}=1$, that is

$$
\frac{1}{3 a}=1
$$

so $a=\frac{1}{3}$ and $f(x)=\frac{1}{1-3 x}$ is the solution.

2. Separation of variables

(2) Solve the follwing equations using separation of variables
(a) $y^{\prime}=x^{3}$
(b) $y^{\prime}=5 y$
(c) (Final, 2012) $y^{\prime}=x y, y(0)=e$.
(3) (Final 2014) Find the solution of the DE $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=y^{2}$ that satisfies $y(1)=-1$.

Solution: Write this as $x \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}-y$ so

$$
\frac{\mathrm{d} y}{y^{2}-y}=\frac{\mathrm{d} x}{x}
$$

We now integrate both sides.

$$
\int \frac{\mathrm{d} x}{x}=\log |x|+C
$$

while

$$
\begin{aligned}
\int \frac{\mathrm{d} y}{y(y-1)} & =\int\left(\frac{1}{y-1}-\frac{1}{y}\right) \mathrm{d} y=\log |y-1|-\log |y|+D \\
& =\log \left|\frac{y-1}{y}\right|+D
\end{aligned}
$$

We conclue that

$$
\log |x|+C=\log \left|\frac{y-1}{y}\right|+D
$$

[^0]Exponentiating both sides we get:

$$
|x| e^{C-D}=\left|\frac{y-1}{y}\right| .
$$

Writing $A= \pm e^{C-D}$ so that the signs come out right we get

$$
A x=\frac{y-1}{y}=1-\frac{1}{y}
$$

so that

$$
\frac{1}{y}=1-A x
$$

and

$$
y=\frac{1}{1-A x}
$$

We need the solution such that $y(1)=-1$ that is such that $-1=\frac{1}{1-A}$ which means $1-A=-1$ so $A=2$ and the solution is

$$
y=\frac{1}{1-2 x} .
$$

(4) A physical system satisfies the equation $\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=E$. There m, k, E are constants (mass, spring constant, energy, respectively) and $v=\frac{\mathrm{d} x}{\mathrm{~d} t}$ is the velocity.
(a) Solve the equation to obtain $\frac{\mathrm{d} x}{\mathrm{~d} t}=v=$

Solution: $\quad v=\sqrt{\frac{2 E}{m}-\frac{k}{m} x^{2}}$.
(b) Suppose $m=k=1$ and $E=\frac{1}{2}$. Integrate both sides of $\frac{\mathrm{d} x}{\sqrt{1-x^{2}}}=\mathrm{d} t$ and find a formula for $x=x(t)$.
(c) Solve the problem for general m, k, E.

[^0]: Date: $1 / 3 / 2017$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

