Math 101 - WORKSHEET 17 **IMPROPER INTEGRALS**

1. Improper at infinity

(1) For which values of p does $\int_1^\infty \frac{1}{x^p} dx$ converge? Diverge?

(2) (Final, 2010) Evaluate $\int_{-\infty}^{-1} e^{2x} dx$. Simplify your answer as much as possible.

(3) Find a constant C such that $\int_{-\infty}^{+\infty} \frac{C \, dx}{1+x^2} = 1.$

- (4) We study $\int_{-\infty}^{+\infty} x \, dx$. (a) Evaluate $\int_{-T}^{T} x \, dx$. (b) Evaluate $\lim_{T\to\infty} \int_{-T}^{T} x \, dx$. (c) Does the integral converge?

(5) (Final, 2009) For what values of p does $\int_{e}^{\infty} \frac{\mathrm{d}x}{x(\log x)^{p}}$ converge?

Date: 10/2/2017, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

- 2. Improper at finite points
- (6) For which values of p does $\int_0^1 \frac{\mathrm{d}x}{x^p}$ converge?

(7) (Math 103 Final, 2013) Evaluate the integral if it exists, otherwise show that it doesn't: $I = \int_0^2 \frac{\mathrm{d}x}{1-x^2}$.

3. Comparison of integrals

(8) Decide which of the following integrals converge (a) (103 Final, 2012) $\int_1^\infty \frac{1+\sin x}{x^2} dx.$

(b)
$$\int_1^\infty \frac{3-\cos x}{x} \, \mathrm{d}x.$$

- (c) (Bell curve) $\int_{-\infty}^{+\infty} e^{-x^2} dx$
- (d) $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x} + \sin x}$
- (e) (hard) $\int_0^1 \frac{dx}{x^2 + x^3}$
- (f) (hard) $\int_0^\infty \frac{x^{1000}}{e^x} \, \mathrm{d}x$