Math 101 - SOLUTIONS TO WORKSHEET 17 IMPROPER INTEGRALS

1. Improper at infinity

(1) For which values of p does $\int_1^\infty \frac{1}{x^p} dx$ converge? Diverge?

Solution: For $p \neq -1$ we have $\int_1^T \frac{1}{x^p} dx = \left[\frac{1}{1-p}x^{1-p}\right]_1^T = \frac{1}{1-p}\left(T^{1-p}-1\right)$. If 1-p>0 then $T^{1-p} \to \infty$ so the integral diverges. If 1-p<0 then $T^{1-p} \to 0$ and the integral converges. If 1-p=0 then $\int_1^T \frac{1}{x^p} dx = \left[\log x\right]_1^T = \log T \to \infty$ and the integral diverges.

(2) (Final, 2010) Evaluate $\int_{-\infty}^{-1} e^{2x} dx$. Simplify your answer as much as possible.

Solution: $\int_T^{-1} e^{2x} dx = \left[\frac{1}{2}e^{2x}\right]_{x=T}^{x=-1} = \frac{1}{2}\left(e^{-2}-e^T\right)$. Now $\lim_{T\to -\infty} e^{2T} = \lim_{x\to -\infty} e^x = 0$ so

$$\int_{-\infty}^{-1} e^{2x} \, \mathrm{d}x = \lim_{T \to -\infty} \frac{1}{2} \left(e^{-2} - e^{2T} \right) = \boxed{\frac{1}{2} e^{-2}}.$$

Solution: $\int_{-T}^{-1} e^{2x} \, dx = \left[\frac{1}{2} e^{2x} \right]_{x=-T}^{x=-1} = \frac{1}{2} \left(e^{-2} - e^{-T} \right). \text{ Now } \lim_{T \to \infty} e^{-2T} = \lim_{x \to \infty} e^{-x} = 0$

$$\int_{-\infty}^{-1} e^{2x} \, \mathrm{d}x = \lim_{T \to \infty} \frac{1}{2} \left(e^{-2} - e^{-2T} \right) = \boxed{\frac{1}{2} e^{-2}}.$$

(3) Find a constant C such that $\int_{-\infty}^{+\infty} \frac{C \, \mathrm{d}x}{1+x^2} = 1$. **Solution:** $\int_0^T \frac{C \, \mathrm{d}x}{1+x^2} = C \left[\arctan x\right]_{x=0}^{x=T} = C \arctan T$ so $\int_0^\infty \frac{\mathrm{d}x}{1+x^2} = C \lim_{T \to \infty} \arctan T = \frac{\pi}{2}C$. Since the function is symmetric we also have $\int_{-\infty}^0 \frac{C \, \mathrm{d}x}{1+x^2} = \frac{\pi}{2}C$ so

$$\int_{-\infty}^{+\infty} \frac{C \, \mathrm{d}x}{1 + x^2} = \pi C$$

and we need to take $C = \frac{1}{\pi}$.

- (4) We study $\int_{-\infty}^{+\infty} x \, \mathrm{d}x$.
 - (a) Evaluate $\int_{-T}^{T} x \, dx$.

(b) Evaluate $\lim_{T\to\infty} \int_{-T}^T x \, dx$. (c) Does the integral converge? Solution: $\int_T^{-T} x \, dx = 0$ since the integrand is odd, so $\lim_{T\to\infty} \int_{-T}^T x \, dx = 0$. Nevertheless the integral diverges: $\int_0^\infty x \, \mathrm{d}x$ diverges, as does $\int_{-\infty}^0 x \, \mathrm{d}x$. (5) (Final, 2009) For what values of p does $\int_e^\infty \frac{\mathrm{d}x}{x(\log x)^p}$ converge?

Solution: We note that $\frac{dx}{x} = d(\log x)$, so letting $u = \log x$ we have $\int_{x=e}^{x=T} \frac{dx}{x(\log x)^p} = \int_1^{\log T} \frac{du}{u^p}$. Now as $T \to \infty$, $\log T \to \infty$ as well, so this converges exactly when $\int_1^\infty \frac{du}{u^p}$ converges, that is exactly for |p>1|

2. Improper at finite points

(6) For which values of p does $\int_0^1 \frac{dx}{r^p}$ converge?

Solution: For $p \neq 1$ we have $\int_{\epsilon}^{1} \frac{dx}{x^{p}} = \left[\frac{x^{1-p}}{1-p}\right]^{1} = \frac{1}{1-p} - \frac{\epsilon^{1-p}}{1-p}$. Now as $\epsilon \to 0$,

$$\lim_{\epsilon \to 0} \epsilon^{1-p} = \begin{cases} 0 & 1-p > 0\\ \infty & 1-p < 0 \end{cases}$$

so $\int_0^1 \frac{\mathrm{d}x}{x^p}$ exists when p < 1 and diverges when p > 1. For p = 1 we have $\int_{\epsilon}^1 \frac{\mathrm{d}x}{x} = -\log \epsilon \longrightarrow \infty$ and the integral diverges as well.

(7) (Math 103 Final, 2013) Evaluate the integral if it exists, otherwise show that it doesn't: $I = \int_0^2 \frac{dx}{1-x^2}$ **Solution:** The function $\frac{1}{1-x^2}$ is discountinuous at x=1, so we need to consider the convergence of $\int_0^1 \frac{\mathrm{d}x}{1-x^2}$ and $\int_1^2 \frac{\mathrm{d}x}{1-x^2}$ separately. Considering the first integral, for $0 \le x < 1$ we have $\frac{1}{1-x^2} = \frac{1}{(1-x)(1+x)} \ge \frac{1}{1-x} \cdot \frac{1}{1+1}$. Now letting 1-x=u we have $\int_{x=0}^{x=1} \frac{\mathrm{d}x}{2(1-x)} = \frac{1}{2} \int_{u=0}^{u=1} \frac{\mathrm{d}u}{u}$ diverges by the

p-test (p=1) so our integral diverges. Solution: We have $\frac{1}{1-x^2} = \frac{1}{2} \frac{1}{1-x} + \frac{1}{2} \frac{1}{1+x}$. The second function is continuous on [0,2] so it's enough to study $\frac{1}{2} \int_0^2 \frac{dx}{1-x}$. Changing variables to u=1-x we have

$$\int_{x=0}^{x=2} \frac{\mathrm{d}x}{1-x} = \int_{u=1}^{u=-1} \frac{-\mathrm{d}u}{u} = \int_{u=-1}^{u=1} \frac{\mathrm{d}u}{u} \,.$$

Now both $\int_{-1}^{0} \frac{du}{u}$ and $\int_{0}^{1} \frac{du}{u}$ diverge by the *p*-test so the integral diverges.

3. Comparison of integrals

- (8) Decide which of the following integrals converge
 - (a) (103 Final, 2012) $\int_1^\infty \frac{1+\sin x}{x^2} dx$.

Solution: Let $g(x) = \frac{1+\sin x}{x^2}$. Since $\sin x \ge -1$ for all x we have $g(x) \ge \frac{1+(-1)}{x^2} = 0$. Since $\sin x \le 1$ for all x we have $g(x) \le \frac{1+1}{x^2} = \frac{2}{x^2}$. Now $\int_1^\infty \frac{\mathrm{d}x}{x^2}$ converges by the p-test (p=2>1) so $\int_1^\infty \frac{2\,\mathrm{d}x}{x^2}$ converges as well. By the comparison test it follows that $\int_1^\infty g(x)\,\mathrm{d}x$ converges. (b) $\int_1^\infty \frac{3-\cos x}{x}\,\mathrm{d}x$.

Solution: Let $f(x) = \frac{3+\cos x}{x}$. $\cos x \ge -1$ we for all x we have $f(x) \ge \frac{3+(-1)}{x} \ge \frac{1}{x}$. Now $\int_{1}^{\infty} \frac{\mathrm{d}x}{x}$ diverges by the p-test (p=2>1) so by the comparison test $\int_{1}^{\infty} \frac{3+\cos x}{x} \, \mathrm{d}x$ diverges as well.

(c) (Bell curve) $\int_{-\infty}^{+\infty} e^{-x^2} dx$

Solution: By symmetry (the function is even) it's enough to consider $\int_0^\infty e^{-x^2} dx$. Since $\int_0^1 e^{-x^2} dx$ exists, it's enough to consider $\int_1^\infty e^{-x^2} dx$. But for $x \ge 1$, $x^2 \ge x$ so $e^{-x^2} \le e^{-x}$. Now $\int_1^\infty e^{-x} dx$ converges (exponential function fact) and $e^{-x^2} \ge 0$ for all x, so by the comparison test $\int_1^\infty e^{-x^2} dx$ converges. It follows that $\int_{-\infty}^{+\infty} e^{-x^2} dx$ converges as well.

(d) $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x} + \sin x}$

Solution: The function is continuous on (0,1] and since $1 < \pi$ we have $0 < \sin x$ on that interval. It follows that $\sqrt{x} + \sin x > \sqrt{x} > 0$ and thus $0 < \frac{1}{\sqrt{x} + \sin x} < \frac{1}{\sqrt{x}}$ on our interval. Now $\int_0^1 \frac{dx}{\sqrt{x}}$ converges by the *p*-test $(p = \frac{1}{2} < 1)$ so by the comparison test the given integral converges as well.

(e) $\frac{dx}{(hard) \int_0^1 \frac{dx}{x^2 + x^3}}$

Solution: Multiplying the inequality $0 < x \le 1$ by x^2 we see that $x^3 < x^2$. It follows that $x^2 + x^3 \le 2x^2$ so that $\frac{1}{x^2 + x^3} \ge \frac{1}{2x^2}$. Now $\int_0^1 \frac{\mathrm{d}x}{2x^2} = \frac{1}{2} \int_0^1 \frac{\mathrm{d}x}{x^2}$ diverges by the p-test (p = 2 > 1) so by the comparison test the given integral diverges as well.

(f) (hard) $\int_0^\infty \frac{x^{1000}}{e^x} \, \mathrm{d}x$

2

Solution: Any exponential function grows faster than any polynomial function, so that $x^{1000} \le e^{x/2}$ for x large enough (1000 applications of l'Hôpital's rule will show $\lim_{x\to\infty}\frac{x^{1000}}{e^{x/2}}=0$). It follows that $\frac{x^{1000}}{e^x}=\frac{x^{1000}}{e^{x/2}}\cdot\frac{1}{e^{x/2}}\le \frac{1}{e^{x/2}}$ for x large enough. But $\int_0^\infty \frac{1}{e^{x/2}}\,\mathrm{d}x$ exists (expoential decay), so the given integral exists as well.