Math 101 - WORKSHEET 16 APPROXIMATE INTEGRATION

(1) (Final 2012) Let $I = \int_{1}^{2} \frac{1}{x} dx$. (a) Write down Simpson's rule approximation for I using 4 points (call it S_4)

(b) Without computing I, find an upper bound for $|I - S_4|$. You may use the fact that if $|f^{(4)}(x)| \leq$ K on [a, b] then the error in the approximation with n points has magnitude at most K(b - b) $a)^{5}/180n^{4}$.

(2) (Final 2015) Consider I = ∫₀²(x − 3)⁵ dx.
(a) Write down the Simpson's rule approximation to I with n = 6. You may leave your answers in calculator-ready form.

(b) Which method of approximating I results in a smaller error bound: the Midpoint Rule with n = 100 intervals, or Simpson's Rule with n = 10 intervals? Justify your answer. You may use the formulas $|E_{\rm M}| \leq \frac{K(b-a)^3}{24n^2}$ and $|E_S| \leq \frac{L(b-a)^5}{180n^4}$ where K is an upper bound for |f''(x)| and L is an upper bound for $|f^{(4)}(x)|$.

Date: 8/2/2017, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(3) (Final 2008) Let $I = \int_0^1 \cos(x^2) dx$. It can be shown that the fourth derivative of $\cos(x^2)$ has absolute value at most 60 on [0, 1]. Find *n* such the Simpson's rule approximation to *I* using *n* points has error less than or equal to 0.001. You may use that that if $|f^{(4)}(t)| \leq K$ for $a \leq t \leq b$ then error in using Simpson's rule to approximate $\int_a^b f(x) dx$ has absolute value less than or equal to $K(b-a)^5/180n^4$.

(4) Let $I = \int_4^6 \sin(\sqrt{x}) \, dx$. Find *n* such that estimating *I* using the midpoint rule and *n* points will have an error of at most $\frac{1}{3000}$. You may use that the absolute error in estimating $\int_a^b f(x) \, dx$ using the midpoint rule and *n* points is at most $K(b-a)^3/24n^2$ whenever $|f^{(2)}(x)| \leq K$ for $a \leq x \leq b$.