Math 101 - WORKSHEET 16 APPROXIMATE INTEGRATION

(1) (Final 2012) Let $I=\int_{1}^{2} \frac{1}{x} \mathrm{~d} x$.
(a) Write down Simpson's rule approximation for I using 4 points (call it S_{4})
(b) Without computing I, find an upper bound for $\left|I-S_{4}\right|$. You may use the fact that if $\left|f^{(4)}(x)\right| \leq$ K on $[a, b]$ then the error in the approximation with n points has magnitude at most $K(b-$ a) ${ }^{5} / 180 n^{4}$.
(2) (Final 2015) Consider $I=\int_{0}^{2}(x-3)^{5} \mathrm{~d} x$.
(a) Write down the Simpson's rule approximation to I with $n=6$. You may leave your answers in calculator-ready form.
(b) Which method of approximating I results in a smaller error bound: the Midpoint Rule with $n=100$ intervals, or Simpson's Rule with $n=10$ intervals? Justify your answer. You may use the formulas $\left|E_{\mathrm{M}}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}$ and $\left|E_{S}\right| \leq \frac{L(b-a)^{5}}{180 n^{4}}$ where K is an upper bound for $\left|f^{\prime \prime}(x)\right|$ and L is an upper bound for $\left|f^{(4)}(x)\right|$.
(3) (Final 2008) Let $I=\int_{0}^{1} \cos \left(x^{2}\right) \mathrm{d} x$. It can be shown that the fourth derivative of $\cos \left(x^{2}\right)$ has absolute value at most 60 on $[0,1]$. Find n such the Simpson's rule approximation to I using n points has error less than or equal to 0.001 . You may use that that if $\left|f^{(4)}(t)\right| \leq K$ for $a \leq t \leq b$ then error in using Simpson's rule to approximate $\int_{a}^{b} f(x) \mathrm{d} x$ has absolute value less than or equal to $K(b-a)^{5} / 180 n^{4}$.
(4) Let $I=\int_{4}^{6} \sin (\sqrt{x}) \mathrm{d} x$. Find n such that estimating I using the midpoint rule and n points will have an error of at most $\frac{1}{3000}$. You may use that the absolute error in estimating $\int_{a}^{b} f(x) \mathrm{d} x$ using the midpoint rule and n points is at most $K(b-a)^{3} / 24 n^{2}$ whenever $\left|f^{(2)}(x)\right| \leq K$ for $a \leq x \leq b$.

