Math 101 — SOLUTIONS TO WORKSHEET 9
SOLIDS OF REVOLUTION, INTEGRATION BY PARTS

(1) Solids of revolution
(a) (Final 2014, variant) Find the volume of the solid generated by rotating the finite region bounded
by y = % and 3z + 3y = 10 about the line y = —%. It will be useful to sketch the region first.

Solution: The intersection points are where z + % = 1—30 that is
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where 22 — 1—3095 + 1 = 0 that is where z = 10/3i2 s 1 _ 1016\/62 = 5—§4 = %,3. Setting

f(x) = 3 —z and g(z) = L the region is {(z,y) |3 <z <3, g(x) <y < f(x)}; the cross-

3
sections when revolving about the line x = f% are annuli with inner radius g(z) + %, outer

radius f(z) + % and therefore area 7 ((f(a:) + %)2 — (g(z) + %)2) so the volume is:
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(b) The area between the y-axis, the curve y = 22 and the line y = 4 is rotated about the y-axis.

What is the volume of the resulting region?
Solution: Slicing perpendicular to the y-axis, we need to evaluate
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(2) Integrate by parts
(a) [ze”dx
Solution: Let u =z, dv = e”dx so that v = f e dx = e*. Then du = dx so that
/xe’”dx:/udv:uv—/vdu:xex—/e”dx:xe”—e”—i—C:(m—l)e”—l—C.

(b) (Final, 2014) [zlogxdx
Solution: This time, let v = logx, dv = x dx so that v = %xz and du = %dx Integrating by
parts, we get:
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