Math 101 - SOLUTIONS TO WORKSHEET 9 SOLIDS OF REVOLUTION, INTEGRATION BY PARTS

(1) Solids of revolution
(a) (Final 2014, variant) Find the volume of the solid generated by rotating the finite region bounded by $y=\frac{1}{x}$ and $3 x+3 y=10$ about the line $y=-\frac{4}{3}$. It will be useful to sketch the region first.

The intersection points are where $x+\frac{1}{x}=\frac{10}{3}$ that is where $x^{2}-\frac{10}{3} x+1=0$ that is where $x=\frac{10 / 3 \pm \sqrt{\frac{100}{9}-4}}{2}=\frac{10 \pm \sqrt{64}}{6}=\frac{5 \pm 4}{3}=\frac{1}{3}$, 3. Setting $f(x)=\frac{10}{3}-x$ and $g(x)=\frac{1}{x}$ the region is $\left\{(x, y) \left\lvert\, \frac{1}{3} \leq x \leq 3\right., g(x) \leq y \leq f(x)\right\}$; the crosssections when revolving about the line $x=-\frac{4}{3}$ are annuli with inner radius $g(x)+\frac{4}{3}$, outer radius $f(x)+\frac{4}{3}$ and therefore area $\pi\left(\left(f(x)+\frac{4}{3}\right)^{2}-\left(g(x)+\frac{4}{3}\right)^{2}\right)$ so the volume is:

$$
\begin{aligned}
\pi \int_{x=1 / 3}^{x=1}\left(\left(\frac{10}{3}-x+\frac{4}{3}\right)^{2}-\left(\frac{1}{x}+\frac{4}{3}\right)^{2}\right) \mathrm{d} x & =\pi \int_{x=1 / 3}^{x=3}\left(\frac{196}{9}-\frac{28}{3} x+x^{2}-\frac{1}{x^{2}}-\frac{8}{3 x}-\frac{16}{9}\right) \mathrm{d} x \\
& =\pi \int_{x=1 / 3}^{x=3}\left(20-\frac{28}{3} x+x^{2}-\frac{1}{x^{2}}-\frac{8}{3 x}\right) \mathrm{d} x \\
& =\pi\left[20 x-\frac{14}{3} x^{2}+\frac{x^{3}}{3}+\frac{1}{x}-\frac{8}{3} \log |x|\right]_{x=1 / 3}^{x=3} \\
& =\pi\left[\left(60-42+9+\frac{1}{3}-\frac{8}{3} \log 3\right)-\left(\frac{20}{3}-\frac{14}{27}+\frac{1}{81}+3-\frac{8}{3} \log \frac{1}{3}\right)\right] \\
& =\pi\left[18 \frac{14}{81}-\frac{16}{3} \log 3\right]=18 \frac{14}{81} \pi-\frac{16 \pi}{3} \log 3
\end{aligned}
$$

(b) The area between the y-axis, the curve $y=x^{2}$ and the line $y=4$ is rotated about the y-axis. What is the volume of the resulting region?
Solution: Slicing perpendicular to the y-axis, we need to evaluate

$$
\int_{y=0}^{y=4} \pi x^{2} \mathrm{~d} y=\int_{y=0}^{y=4} \pi y \mathrm{~d} y=\frac{\pi}{2}\left[y^{2}\right]_{y=0}^{y=4}=8 \pi
$$

(2) Integrate by parts
(a) $\int x e^{x} \mathrm{~d} x$

Solution: Let $u=x, \mathrm{~d} v=e^{x} \mathrm{~d} x$ so that $v=\int e^{x} \mathrm{~d} x=e^{x}$. Then $\mathrm{d} u=\mathrm{d} x$ so that $\int x e^{x} \mathrm{~d} x=\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u=x e^{x}-\int e^{x} \mathrm{~d} x=x e^{x}-e^{x}+C=(x-1) e^{x}+C$.
(b) (Final, 2014) $\int x \log x \mathrm{~d} x$

Solution: This time, let $u=\log x, \mathrm{~d} v=x \mathrm{~d} x$ so that $v=\frac{1}{2} x^{2}$ and $\mathrm{d} u=\frac{1}{x} \mathrm{~d} x$. Integrating by parts, we get:

$$
\begin{aligned}
\int x \log x \mathrm{~d} x & =\frac{1}{2} x^{2} \log x-\int \frac{1}{2} x^{2} \cdot \frac{1}{x} \mathrm{~d} x \\
& =\frac{1}{2} x^{2} \log x-\frac{1}{2} \int x \mathrm{~d} x \\
& =\frac{1}{2} x^{2} \log x-\frac{1}{4} x^{2}+C .
\end{aligned}
$$

