Math 101 - WORKSHEET 2 AREA UNDER A CURVE

(1) Let A be the area lying between the x-axis, the curve $y=x^{2}$ and the lines $x=0, x=1$. (a) Draw a picture
(b) Dividing the interval $[0,1]$ into two equal-width strips, show that $A \leq \frac{1}{2} \cdot\left(\frac{1}{2}\right)^{2}+\frac{1}{2} \cdot 1^{2}=\frac{5}{8}$.
(c) Using the same subdivision, show that $A \geq \frac{1}{2} \cdot 0^{2}+\frac{1}{2} \cdot\left(\frac{1}{2}\right)^{2}=\frac{1}{8}$.
(d) Using a subdivision into 3 strips, show $\frac{1}{3} \cdot 0^{2}+\frac{1}{3}\left(\frac{1}{3}\right)^{2}+\frac{1}{3}\left(\frac{2}{3}\right)^{2} \leq A \leq \frac{1}{3}\left(\frac{1}{3}\right)^{2}+\frac{1}{3}\left(\frac{2}{3}\right)^{2}+\frac{1}{3} \cdot 1^{2}$.
(e) For better accuracy, we use rectangles whose height is given by the function value at the middle of the strip. What do you get now?
(2) The Σ notation:
(a) Write an expression for the sum of the sqare roots of the integers between 5 and 32 .
(b) How many terms are there in this sum?
(c) Write an expression for the sum of the integers between 1 and n.
(d) Write an expression for the sum of the integers between 1 and n.

